Challenges and Solutions for Aerospace Software Systems

Vann M. Knight
vann.m.knight@boeing.com
Agenda

- Introduction
- Aerospace domains
- Cross domain considerations
- Domain specific considerations
 - Commercial aircraft
 - Military flight management
 - Mission systems
 - Intelligence Surveillance Reconnaissance
 - Unmanned
 - Space
Boeing Aerospace

Programs (400+)
- 787-3
- 787-8
- 787-9
- 767-200ER
- 767-300ER,F
- 767-400ER
- Customer Support
- Material Management
- Maintenance Services
- Fleet Enhancements
- Flight Operations
- Delta II
- Delta IV
- 777-200ER,LR
- 777-300ER
- 777 Freighter
- KC-767
- C-17
- P-8A MMA
- 737-600
- 737-700
- 737-800
- 737-900,ER
- F/A-18 E/F
- F-15E
- T-45
- AV-8B
- Harpoon
- SLAM-ER
- JDAM
- SDB
- 747-400F,ER,ERF
- 747-8
- Advanced Logistics Services
- Integrated Logistics
- Maintenance Modification & Upgrades
- Training Systems & Services

Sites (30+)
- Decatur, Alabama
- Huntsville, Alabama
- Mesa, Arizona
- Anaheim, California
- Edwards AFB, California
- El Segundo, California
- Huntington Beach, California
- Long Beach, California
- Seal Beach, California
- Washington DC
- Cape Canaveral, Florida
- Ft. Walton Beach, Florida
- Kennedy Space Center, Florida
- Macon, Georgia
- Wichita, Kansas
- St. Louis, Missouri
- Heath, Ohio
- Portland, Oregon
- Philadelphia, Pennsylvania
- Oakridge, Tennessee
- Houston, Texas
- San Antonio, Texas
- Auburn, Washington
- Everett, Washington
- Frederickson, Washington
- Kent, Washington
- Renton, Washington
- Seattle, Washington
- Tukwila, Washington
- Brisbane, Sydney & Melbourne, Australia
- Winnipeg, Manitoba, Canada

Customers
- Commercial Airlines
- U.S. Air Force
- NASA
- U.S. Navy
- U.S. Marine Corps
- U.S. Army
- Foreign Governments

Oversight Bodies
- Federal Aviation Administration (FAA)
- Defense Contract Mgmt Agency (DCMA)
- Defense Contract Audit Agency (DCAA)
- Foreign Agencies (e.g., CAA)

Copyright © 2009 Boeing. All rights reserved.
Domains

- Commercial Aircraft
- Flight management
- Mission
- ISR
- Unmanned
- Space

Software Intensive Systems
Considerations

- **Key Cross Domain Considerations**
 - Maintain controlled flight
 - Safety
Quality Attributes

- Quality attributes drive architecture decisions
 - Scheduling, data flow, fault management

- Examples (run time and design time)
 - Performance
 - Hard real time
 - Soft real time
 - Safety
 - Security
 - Affordability
 - Availability
 - H/W redundancy
 - Fault tolerance
 - Interoperability
 - With external systems
 - Maintainability
 - Long term life cycle
 - Portability
 - Long term life cycle
 - Composability, reusability, scalability
 - Extremely large size of S/W systems
Middleware

- Active research field
- Moves domain independent complexities out of applications
- Facilitates development by large distributed teams
- Enables
 - Heterogeneous systems
 - Code portability
 - Location independence
 - OS independence
Commercial Aircraft Systems

- Large passenger airliners
 - 100+ passengers
- Two main players
 - Fierce competition for market share

- Each new aircraft design is a huge business and technical undertaking
Commercial Aircraft Systems

Challenges
- Safety, safety, safety
- Economy of operation and acquisition
- Verification increasingly difficult
 - Large volume of software
- ARINC-653 supports co-hosting but constrains allowable features

Solutions
- Rigorous design, build and test processes
- Federal verification
- Federated->integrated architecture
- Multi critical components co-hosted
- Integrated Modular Architecture
- Model Based Architecture
Integrated Modular Architecture

Benefits
- Replace federated architectures
- Fewer line replicable units
- Lower power consumptions
- Less wiring
- Weight reduction

Challenges
- Multi-critical components co-hosted
- ARINC-653 constrains allowable features
 - Cache memory not allowed
 - Multi core and multiprocessor configurations
 - Pipelined processors lead to non-deterministic execution (and are restricted)
Model Based Development

- Uses higher level domain specific building blocks
- Used to build and verify complex software systems
- Generate config file \leftrightarrow Generate (almost) complete system
- Often used for specific domains where automation allows higher level abstractions
 - Control systems
 - Graphical User Interfaces
 - Design captured in “building blocks”

Concerns

- Code size increases
- Execution time increases

Effective usage requires multi-disciplined team

- Design constraints
- Efficiency
Military Flight Controls

- Fighters, Transports, Tankers, Unmanned, Rotorcraft

- Inherently periodic
 - Control laws
 - Determinism
 - Hard real time
 - Timer generated interrupts
 - Inputs → processing → outputs

- Evolution
 - Mechanical → hydro-mechanical → analog → digital
Military Flight Controls

- **Challenges**
 - Safety
 - Affordability
 - Availability
 - New aircraft are inherently unstable
 - Require higher rate control

- **Solutions**
 - Multi channel
 - Redundancy
 - Voting schemes
 - N-version programming
 - Standards, processes, reviews
Avionics Mission Computing

- Pilot vehicle interaction
 - Controls and displays
- Sensor control and processing
- Aircraft health and status
- Weapons control
- Payload control

- Characteristics
 - Hard and soft real time
 - Frequent updates
 - Highly modal
Avionics Mission Computing

Challenges
- Long service life
e.g. B-52, 1955 -> ??
- Mixture of hard real time and soft real time
- Size weight and power
- Affordability
- Availability

Solutions
- Software reconfiguration vs redundancy
- COTS hardware and software
- Product line software and component oriented architecture
- Flexible event based processing
Unmanned Air Systems

- Comprised of unmanned air vehicles and control stations
- Wide range of sizes
- Variety of functionality
 - Remotely piloted
 - Fully autonomous

- Usages
 - Intelligence Surveillance Reconnaissance
 - Cargo and transport
 - Weapon delivery
Unmanned Air Systems

- **Challenges**
 - Communications and navigation
 - Higher criticality vs. manned
 - Autonomy

- **Solutions**
 - Redundancy
 - Robust contingency automation
 - e.g. loss of comm protocol
 - Alternate routes/airfields
 - Varying levels of autonomy
 - Defined by functions vs. system
Intelligence, Surveillance, Reconnaissance

- Sophisticated Sensor Systems
- Systems to monitor
 - Airspace, seas, land masses
- Air traffic control
- Shipboard defense
- Fire detection systems
- Often responsible for
 - Common operating picture
 - Shared situational awareness
Intelligence, Surveillance, Reconnaissance

Challenges

- Information Assurance
- Information Integration

Example

- Classified sensor capability
- Multiple classifications of data on board
- Strict data separation
- Require various clearance levels
Intelligence, Surveillance, Reconnaissance

Solutions

- **Hardware solutions**
 - Physical separation
 - Partition data and services based on classification
 - Users have access based on clearance level

- **Software Solutions**
 - Software partitions
 - Operating system accommodates required separation
 - Overlapping with safety critical ARINC 653 solutions
 - Time and space partitioning
 - Movement of data low to high, relatively easy
 - Movement of data high to low
 - Requires sanitization
 - Cross domain guard
 - Configured with rules for allowable transfers
Satellites and Spacecraft

- **Satellites**
 - Communication links
 - Navigation signals
 - Weather tracking
 - Terrain mapping
 - Space imaging

- **Spacecraft**
 - Shuttle
 - Space station

- **Duration**
 - Few months to > 15 years

MARISAT-F2 decommissioned after 32 years service!
Satellites and Spacecraft

- **Evolution**
 - 60’s, 70’s and 80’s
 - Most flight logic on the ground
 - Technical challenges
 - Confined space, weight, power and extreme environments
 - Limited to command delivery and telemetry encoding
 - By 2000’s
 - Onboard flight control
 - Power and thermal subsystems
Satellites and Spacecraft

- **Challenges**
 - Extremely high availability and reliability
 - Remote access
 - Harsh environments
 - Autonomy
 - Hard real time
 - Deal with unforeseen hardware anomalies gracefully
Satellites and Spacecraft

- **Solutions**
 - Rigorous qualification
 - White box testing
 - Automated branch and logic testing
 - Black box testing
 - Independent verification and validation team
 - Final qualification test -> hardware in the loop
 - Anomalies
 - Safeguard until control is re-established and anomaly resolved
 - Normal operations discontinued
 - Conserve critical resources
Summary

- Wide range of challenges and solutions
- Conservative approaches

- Paper entitled:
 - “Challenges and Solutions for Embedded and Networked Aerospace Software Systems”

- Planned for inclusion in
 - IEEE Special Edition
 - Aerospace and Automotive Software
 - Scheduled early 2010