Non-Explosive Blast Pulse Loading of Armor Panels and Materials

Prof. Hyonny Kim and Dr. Daniel Whisler
Dept. Structural Engineering, UCSD

Center for Extreme Events Research
Kickoff Meeting, UCSD
February 9, 2015
Objectives

• Generate dynamic pressure pulse to mimic close-in blast detonation on armor panels
 – non-explosive testing with UCSD Blast Simulator
 – wide area (24 x 24 in.) sandwich armored panels
 – spatially and temporally varying

• Establish dynamic test methods with fast actuators and gas gun to produce high strain rates and deformation levels

• Define modeling capability with FEA to enable virtual armor design studies
Dynamic Load Pulse Generation

- Fast-rate loading to excite dynamic response
 - Similar to explosive blast loading
- Use impact to impart desired impulse/momentum
- Match total impulse and tune loading history via:
 - Projectile mass and geometry
 - Velocity
 - Pulse shaping media

\[
\text{Impulse of explosion: large initial pressure } \quad P_A, \text{ short duration pulse } T_A
\]

\[
\text{Specific Impulse } = \frac{P_A T_A}{2} = \frac{P_B T_B}{2}
\]

Simulated blast: finite loading time \(T_{B1} \), lower pressure \(P_B \), longer duration pulse \(T_{B2} \)

Scalable
Investigation of Vehicle Armor Panels for Blast Protection
- Armorworks / US Navy
- ONR Grant No. N00014-11-C-0288

- Develop test methodology for *quantitative measurement of blast impulse absorption*
 - evaluate/rank armor panel designs
- Tile array applies impulse to flexible target
 - represent buried blast charge

Test Video
Large Panel Projectile Design

- Tiled projectile selected for wide area pressure pulse
- Bi-metal blocks with spacers for spatial and temporal control
- Shaped foam tips for tailored pressure pulse
Blast Test Details

• **Non-explosive:** tiled array launched at 24.6 m/s for 50.3 kg projectile package total mass
 – 7,250 Pa-s specific impulse corresponds to 1.74 kg TNT at 305 mm standoff

• **Actual blast:** tests conducted by Oregon Ballistic Lab at remote desert field site

• Target panels 610 x 610 mm

• Transmission plate 13.7 kg
Large Panel Results

Non-Explosive Trans. Plate Acceleration

![Graph of non-explosive transmission plate acceleration over time](image1)

Blast Trans. Plate Acceleration

![Graph of blast transmission plate acceleration over time](image2)

<table>
<thead>
<tr>
<th>SPECIMEN</th>
<th>ACCELERATION & REDUCTION TO RHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Areal Density (kg/m²)</td>
</tr>
<tr>
<td>ID</td>
<td>(g)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>RHA</td>
<td>48.8</td>
</tr>
<tr>
<td>1436</td>
<td>33.8</td>
</tr>
<tr>
<td>1437</td>
<td>27.1</td>
</tr>
<tr>
<td>1568</td>
<td>32.5</td>
</tr>
<tr>
<td>1569</td>
<td>28.3</td>
</tr>
<tr>
<td>1570</td>
<td>31.5</td>
</tr>
<tr>
<td>1571</td>
<td>25.9</td>
</tr>
<tr>
<td>1572</td>
<td>25.3</td>
</tr>
<tr>
<td>1574</td>
<td>24.7</td>
</tr>
<tr>
<td>ALUM</td>
<td>25.7</td>
</tr>
</tbody>
</table>

- Transmitted pressure accelerates transmission plate
- Acceleration directly measured by shock accelerometer at transmission plate CG
- Average calculated during time while transmission plate accelerates to max velocity
- Best performance relative to RHA steel:
 - 1436 & 1571: 35 to 37% reduction of average initial acceleration
 - 1437 & 1571: 72 to 76% reduction of max acceleration
Coupon Specimen Level Testing

- Projectile: 3.18 mm alum. disc on foam body launched at 35 to 95 m/s
- Compare transmitted pressure pulse of sandwich designs vs RHA steel
- Collect data supporting simulation development

Damaged Specimens

35 m/s

95 m/s

Up to 75% Reduction Relative to RHA
FE Modeling Methodology

- Accurate FE models developed to enable virtual armor design
- Models established/validated from tests at different size class:
 - physically-accurate models established via simulation of material coupon and small component (gas gun) tests
 - apply to large panel simulation
Large Panel Results

Non-Explosive Simulation

Pressure Pulse (Ideal) Simulation

Deformation Profiles

Transmission plate velocity measured with accelerometer and high speed camera in comparison to FEA predictions.
Conclusions

• Non-explosive large panel tests can approximate damage modes and deformation profile for flexible armored panels
• Projectile system is scalable and highly repeatable (w/in 1%)
 – consistency allows quantitative comparison of various armor panel designs – e.g., 76% reduction in max transmitted acceleration w.r.t. RHA
• Hopkinson bar coupon tests give insight into pressure pulse attenuation independent of boundary conditions effects
 – supports FE model development
 – direct method to assess various core materials and configurations (layering, honeycomb cell size, etc.)
• Hierarchical FEA model construction
 – material and small specimen tests used to establish physically-accurate models
 – scale-up to larger specimen/structures (e.g., configured panels)
 – generic methodology applicable for enabling virtual armor design
Description of Impact Research Facility

• Gas guns – for projectile impact and penetration research
 – 79 mm bore gun – max vel. 250 m/s
 – 25.4 mm bore gun w/6.7 m (22 ft.) barrel
 – expected max vel. 1000+ m/s
 – source of high-speed dynamic loading
 • launch flyer plate and other projectiles
 • impact onto specimens mounted to Hopkinson bar

• Hopkinson bars
 – 76.2 mm dia. x 3.2 m length (126 in.)
 – SHPB: 25.4 mm dia. x 1.27 m length (50.5 in.)
 – use for studying projectile properties and developing models
76.2 Mm Hopkinson Bar: High-Rate Dynamic Loading to Large Deformation Levels

- Axial loading of specimen through transfer shaft, similar to SHPB
- Dynamic strain rates tested at 3,700 s\(^{-1}\) controlled by projectile velocity
- Well-controlled coaxial loading produces high specimen crush levels (over 50%) – controlled by projectile KE