Press Clips from 2018


June 4, 2018

Physics World

Cell-like nanobots fight bacterial infection

Gold nanowire nanorobots coated with a combination of two kinds of natural cell membranes might be used to fight bacterial infection, according to new work by researchers at the University of California San Diego. The nanobots can move through whole blood and, thanks to their natural coatings, which "cloak" the devices from the body's defence mechanisms, can absorb and neutralize both pathogenic bacteria as well as the toxins they produce. Full Story


June 4, 2018

New Atlas

Membrane-coated gold "robots" designed to detoxify blood

It's never a good thing when donated human blood -- or even the blood in our bodies -- is infected with bacteria. Scientists at the University of California San Diego, however, are developing a means of removing such blood-borne microbes using tiny ultrasound-powered robots. The base "nanorobots" are made of microscopic lengths of gold nanowire. Via the external application of ultrasound, they can be propelled through liquids including blood, causing them to get thoroughly mixed with it. These nanorobots were coated in a hybrid of platelet and red blood cell membranes. Full Story


May 30, 2018

IEEE Spectrum

Tiny Robots in Disguise Combat Bacteria in the Blood

Researchers have come up with all sorts of ways to propel tiny robots deep into the human body to perform tasks, such as delivering drugs and taking biopsies. Now, there's a nanorobot that can clean up infections in blood. Directed by ultrasound, the tiny robots, made of gold nanowires with a biological coating, dart around blood, attach to bacteria, and neutralize toxins produced by the bacteria. It's like injecting millions of miniature decoys into blood to distract an infection from attacking the real human cells. Full Story


May 1, 2018

Asharq Al-Awsat

Snake-Like Robot to Monitor Creatures Living Underwater

An innovative, snake-like robot can swim silently in salt water without an electric motor. The robot, developed by engineers and marine biologists at the University of California, uses artificial muscles filled with water to propel itself, the German News Agency reported. The team, which includes researchers from UC San Diego and UC Berkeley, say the bot is an important step toward a future when soft robots can swim in the ocean alongside fish and invertebrate without disturbing or harming them. Today, most underwater vehicles designed to observe marine life are rigid and submarine-like Full Story


April 27, 2018

The Irish Times

This robot uses artificial muscles to move like an eel underwater

A translucent robot shaped like an eel that can swim silently underwater could help scientists understand more about marine life. The bot, which was developed by engineers and marine biologists at the University of California, uses artificial muscles filled with water to propel itself rather than a noisy electric motor. The 12in robot is connected to an almost-transparent electronics board that remains on the surface. The team says the the bot is a key step toward a future where soft robots can swim in the ocean alongside marine life without disturbing or harming them. Full Story


April 27, 2018

Quartz

This robot eel is transparent, flexible, nearly silent, and glows in the ocean

There?s something in the water at the University of California, San Diego?a glowing robot inspired by the movement of eel larvae.Researchers at the school's Bioinspired Robotics and Design Lab have created one of the world's softest underwater robots by taking an innovative approach to its conductive components. Instead of having electricity travel through wires to metal electrodes, voltage travels through silicone tubes to internal water chambers. As voltage builds up in the water chambers, the robot's modular components bend in a specific sequence so the robot moves. Full Story


April 26, 2018

Electronics 360

Video: Watch a Soft Robotic Eel Silently Swim

A number of projects are working with soft robotics to build a worm-like device for search and rescue. One swims with real fish to study aquatic life; a snake uses kirigami to move; and another uses origami, for example. Now, researchers at University of California at San Diego have developed an eel-like soft robot that swims silently in salt water without an electric motor using artificial muscles filled with water to propel itself. The foot-long robot is also virtually transparent and is connected to an electronics board that remains on the surface. Full Story


April 26, 2018

Yahoo!

This robot eel glides through saltwater without making a sound

Even before Gore Verbinski's disappointing recent horror movie A Cure for Wellness, we were pretty creeped out by eels. As if the real thing wasn't unnerving enough, however, engineers and marine biologists from the University of California, San Diego, have created an eel robot that's designed to swim silently through saltwater -- using the same rhythmic, ribbon-like motions as its natural counterpart. "The robot is powered by artificial muscles that contract and expand when stimulated with electricity," Caleb Christianson, a Ph.D. student at the Jacobs School of Engineering at UC San Diego Full Story


April 25, 2018

C|Net

Soft and silent eel-like robot can sneak around underwater

"It's really hard to sneak up on a fish, especially if you're a robot," says nanoengineering student Caleb Christianson, one of the developers of a soft eel-like robot that can swim underwater in stealthy silence. Christianson, a doctoral student at the University of California San Diego, is part of an eel-bot team that includes engineers and marine biologists. Their eel-like creation could one day become a preferred way to study marine life since it's not as big and loud as the motor-driven remote-operated underwater vehicles used today. Full Story


April 12, 2018

Canadian Homesteading

Robotic Grippers to Receive Gecko Toes

Scientists from the University of California from San Diego, have consolidated the adhesive attributes of gecko toes with air-controlled robots which appear to be soft, to give robot fingers a superior use. Fit for lifting objects up to 45 pounds, the gripper could be utilized wherever: from the floor to the International Space Station. Full Story