Bending light by a prism

Objective
To study refraction, Snell’s law, and total internal reflection.

Experiments

You will be using a helium-neon (HeNe) laser which produces a red laser beam of wavelength $\lambda = 632.8$nm, and a right-angle prism that is mounted on a rotation stage. This stage has 360° markings on it. The hypotenuse surface of the prism is aligned with the diameter of the circular stage, so that the input and output beam angles are determined by reading the markings on the scale that is directly under the beam path.

A. **Total Internal Reflection (TIR)**
- Place prism in the path of the laser beam. Rotate the stage that the incident beam passing through the iris reflects back.
- Align the prism to aim laser beam at the center of hypotenuse. Check 0° degree reading on the rotation stage.
- Observe where the output beam exits. Does this agree with the fact that the prism is a right-angle prism? (Note that the beam inside the prism is incident on the hypotenuse surface at 45°.)
- Is there another output beam exiting from the hypotenuse surface?

B. **Critical Angle (θ_c)**

- Slowly increase the incident beam angle θ_i. Note the output angle of any beam that may begin to emerge from the hypotenuse surface.
- If a beam emerges from the hypotenuse surface, the beam has exceeded the critical angle condition given by
 $$\sin(\theta_c) = \frac{n_1}{n_2}$$
 where n_1 is refractive index of the air ($n_1 = 1$) and n_2 is refractive index of the prism. Prism is made of a material called BK7 glass and has an index of 1.515 at $\lambda = 632.8$nm. Calculate critical angle θ_c for this wavelength.

- Using Snell's law, experimentally verify θ_c for red light. To do it, measure θ_i when the output beam just begins to emerge from the hypotenuse surface. Calculate θ_2 and compare it with θ_c. Figure below shows the angles that you will be measuring and calculating.

 Note that for the right-angle prism $\theta_2 = \theta_1 - 45°$.

![Diagram of angles](https://via.placeholder.com/150)