Peristaltic Pump Project

Characterize peristaltic pump performance

Background
- Syringe pumps currently used are costly and have reliability issues
- Use of peristaltic pumps could reduce cost as well as user work-load

Objectives
1. Characterize pump performance
 - Dispense Performance
 - Possible Issues
 - Mixing Capability
2. Determine if peristaltic pumps are suitable for use in Gen-Probe products

Results
- **Dispense Volume per Revolution**
 - Average dispense value was 0.32 mL, which was within process specifications
- **Dispense Volume vs. Negative Pressure Head**
 - Working against a negative pressure head reduced the pump output volume

Conclusion
- Pump dispenses within process specification and can drive effective fluid mixing
- Pump is suitable for testing in prototype but is susceptible to external factors

Vacuum Pump Enclosure Project

Assemble and optimize a vacuum pump sound dampening enclosure

Background
For customer satisfaction, the vacuum pump noise output needs to be reduced

Objectives
1. Assemble sound dampening enclosure
2. Measure sound level reduction
3. Optimize enclosure for maximum sound dampening
4. Ensure enclosure allows sufficient ventilation

Methods and Optimizations
- Reduced contact points between pump and enclosure
- Found optimal vibration dampeners
- Gen-Probe is a leader in the development of nucleic acid tests used to diagnose human diseases and screen donated human blood
- Gen-Probe produces fully automated, high throughput systems for diagnostics and blood screening

Results
- **Dispense Volume vs. Negative Pressure Head**
 - Working against a negative pressure head reduced the pump output volume

Conclusion
- Enclosure reduces perceivable noise by half and lowers the pump temperature
- Enclosure is a good first step and will be implemented

Tiplet Detection Project

Develop an algorithm to detect presence of disposable tiplets

Background
- Aspirators remove excess media and wash buffer from samples
- Disposable “tiplets” cap the ends of aspirators
- As a process control, must verify that tiplets do not fall during cycles

Objective
1. Study and characterize tiplet-on and tiplet-off conditions
2. Develop an algorithm to distinguish between the conditions
3. Modify hardware and software to optimize algorithm success

Characterization and Tiplet Detection Algorithm
- The tiplet-on and tiplet-off conditions showed a difference in slope
- An algorithm was developed that took advantage of this difference

Optimizations
- Modified software script – controls speed, movement, sampling frequency
- Adjusted initial aspirator position with washers
- Designed and prototyped an optimized midplate

Results
- The developed algorithm is able to identify whether the tiplet is off or on with a nearly negligible probability of error
- The algorithm is a promising method for tiplet detection
- Further refinement of the algorithm may be necessary

Conclusion and Future Work
- The algorithm is a promising method for tiplet detection
- Further refinement of the algorithm may be necessary

Acknowledgements

Gen-Probe
UCSD Team Internship Program
- Wilbur Braulio
- David Opalsky
- Joe Ellis
- Brian Schroeter
- Norbert Hagen
- Todd Tuggle
- Melody Murphy
- George Walker

Paul Suarez, Robert Holmes, Rosanna Gan