JACOBS SCHOOL CORPORATE AFFILIATES PROGRAM

Amazon.com
AppFolio
AppFormix (Acelio)
ASML CYMER
Arista Networks
ATA Engineering
BD Biosciences
BD Medical
Bentley Systems
Booz Allen Hamilton
Bumble Bee Seafoods
CISCO
CliniComp
Corning
CPC Strategy
Cubic Transportation Systems
Data Torrent
Dexcom
Facebook
General Atomics
General Atomics Aeronautical Systems
Google
Greenlee Communications
Honda R&D
Hughes Network Systems
IBM Corporation
iboss
Informatica
Intel
Intuit
IQ Analog
Kleinfelder
Kyocera America
Lawrence Livermore National Laboratory
Leidos
Lockheed Martin Rotary and Mission Systems
Magma - One Stop Systems
Microsoft
Mitchell International
Mitek Systems
Mtell
NAVAIR
Nordson
Northrop Grumman Aerospace Systems
Northrop Grumman Corporate and Enterprise Shared Services
Northrop Grumman Mission Systems
Ntrepid
Oracle
Qualcomm
Quartus
Raytheon Integrated Defense Systems
Raytheon Space & Airborne Systems
Rincon Research
Salesforce.com
Samsung Research America
Scientific Research Corporation (SRC)
Seamgen
Simplexity Product Development
Skyworks Solutions
Solar Turbines
Sony Interactive Entertainment
Playstation
SONY Electronics
SPAWAR
Stevanato Group S.p.A.
Teradata Corporation
Thermo Fisher Scientific
UTC Aerospace Systems
ViaSat
Yahoo

Be part of this vital partnership between the Jacobs School of Engineering and its Corporate Affiliates Program
+1 (858) 534-3148 JacobsCAP@ucsd.edu
JacobsSchool.ucsd.edu/cap
Thank you to our generous sponsors

JacobsSchool.ucsd.edu/RE
<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30 PM</td>
<td>REGISTRATION</td>
</tr>
<tr>
<td></td>
<td>Price Center, East Lobby - Level 2</td>
</tr>
<tr>
<td>2:00 PM–4:30 PM</td>
<td>POSTER SESSION</td>
</tr>
<tr>
<td></td>
<td>Price Center West Ballroom A&B</td>
</tr>
<tr>
<td></td>
<td>210+ Graduate Students display their research results</td>
</tr>
<tr>
<td>2:30 PM– 4:30 PM</td>
<td>FACULTY TALKS</td>
</tr>
<tr>
<td></td>
<td>Price Center Forum - Level 4</td>
</tr>
<tr>
<td>2:30 PM</td>
<td>ACHIEVING DEEP DECARBONIZATION OF THE GLOBAL ECONOMY: ENGINEERING AND POLICY</td>
</tr>
<tr>
<td></td>
<td>David Victor</td>
</tr>
<tr>
<td></td>
<td>Deep Decarbonization Initiative</td>
</tr>
<tr>
<td></td>
<td>School of Global Policy & Strategy</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>PERSPECTIVES ON CONTEXTUAL ROBOTICS</td>
</tr>
<tr>
<td></td>
<td>Laurel Riek</td>
</tr>
<tr>
<td></td>
<td>Contextual Robotics Institute</td>
</tr>
<tr>
<td></td>
<td>Computer Science and Engineering Department</td>
</tr>
<tr>
<td>3:30 PM</td>
<td>VIRTUAL TOUCH: SMART MATERIALS FOR HUMAN–MACHINE INTERACTION</td>
</tr>
<tr>
<td></td>
<td>Darren Lipomi</td>
</tr>
<tr>
<td></td>
<td>Center for Wearable Sensors</td>
</tr>
<tr>
<td></td>
<td>Sustainable Power and Energy Center</td>
</tr>
<tr>
<td></td>
<td>NanoEngineering Department</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>BRINGING THE MACHINE INTO THE LOOP OF MACHINE LEARNING</td>
</tr>
<tr>
<td></td>
<td>Farinaz Koushanfar</td>
</tr>
<tr>
<td></td>
<td>Electrical and Computer Engineering Department</td>
</tr>
<tr>
<td></td>
<td>Adaptive Computing and Embedded Systems Lab</td>
</tr>
<tr>
<td>4:30 PM–6:00 PM</td>
<td>NETWORKING RECEPTION</td>
</tr>
<tr>
<td></td>
<td>Price Center East Ballroom</td>
</tr>
<tr>
<td></td>
<td>Network with faculty, students and industry partners</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>FACULTY LIGHTNING TALKS</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6–9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTERS BY AGILE RESEARCH CENTER</th>
<th>Posters</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for Wearable Sensors</td>
<td>1–9</td>
<td>11</td>
</tr>
<tr>
<td>Center for Visual Computing</td>
<td>10–21</td>
<td>12–13</td>
</tr>
<tr>
<td>CaliBaja Center for Resilient Materials and Systems</td>
<td>22–36</td>
<td>14–15</td>
</tr>
<tr>
<td>Center for Extreme Events Research</td>
<td>37–44</td>
<td>16</td>
</tr>
<tr>
<td>Sustainable Power and Energy Center</td>
<td>45–51</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTERS BY DEPARTMENT</th>
<th>Posters</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering</td>
<td>52–71</td>
<td>18–19</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>72–105</td>
<td>20–22</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>106–127</td>
<td>23–24</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering</td>
<td>128–174</td>
<td>25–29</td>
</tr>
<tr>
<td>NanoEngineering</td>
<td>175–197</td>
<td>30–32</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>198–216</td>
<td>33–34</td>
</tr>
</tbody>
</table>

Departments, Programs and Research Centers 35
Research Expo Poster Judges 36–38
Notes 40–41
Map — Poster Session 42–43
There is now a widespread technical agreement that stopping global climate change requires essentially zero emissions of carbon dioxide and other warming gases. Much less agreeable has been a political strategy for achieving that goal. This talk will focus on the technology that could likely scale in the real world to achieve zero global emissions. It will also focus on strategies that leading jurisdictions, such as California, could use to accelerate the pace of global decarbonization.

ABOUT: DEEP DECARBONIZATION INITIATIVE

The mission of the UC San Diego Deep Decarbonization Initiative is to help guide a transition in the global economy toward net-zero carbon emissions. The aim is to help real societies link the best science and technology with politically realistic economic strategies for putting new energy systems into place on the scale required to make a difference in global carbon emissions while meeting the energy needs of all of humanity. To accomplish this goal, the Deep Decarbonization Initiative pursues research from the combined perspectives of the social sciences, engineering and the physical and biological sciences. The Initiative organizes research across academic disciplines that engage energy industry officials, elected officials and other policy makers.
Robots are no longer separated from people by cages. They are now entering our daily lives - in the home and on the road, in offices and in hospitals. To operate proximately with people, robots need the ability to dynamically understand and model human activities, understand their context, and select appropriate actions. They also need to work with and learn from people longitudinally, in fluent and contingent ways. My research team explores these topics in depth, and designs algorithms for robots able to achieve these goals. There are many applications of our work, including in neurorehabilitation, critical care, healthy aging, and manufacturing. This talk will highlight several recent projects in these areas.

ABOUT: CONTEXTUAL ROBOTICS INSTITUTE

The Contextual Robotics Institute at UC San Diego aims to advance the research required to develop useful robotic systems for the public good that sense the environment around them; learn from experience and situational awareness; and act autonomously to assist humans in a course of action. The Institute advances contextual robotics through fundamental grand challenge research; applied-research projects; and education programs that provide the talent and innovation necessary to establish San Diego / Cali Baja as a leading robotics hub.

contextualrobotics.ucsd.edu
The sense of touch has great power to elicit thoughtful or emotional responses (pleasant or unpleasant), and to convey information. While human culture is replete with artifacts that interface with the senses of sight, hearing, taste, and smell, objects designed to convey information or trigger emotion by interfacing with the sense of touch represent an open area for investigation. My research group is developing soft materials that can simulate different tactile sensations: rough or smooth, hot or cold, soft or hard, or even slimy. We can then use virtual reality and wearable haptic interfaces to transduce these signals to a user. The key innovative element in our work is the development of electroactive polymers and other soft materials that form conformal mechanical interfaces with human skin. This work leverages our experience in stretchable organic semiconductors, wearable sensors, and nanofabrication, and represents an interface between materials engineering and psychophysics. We envision applications in robotic surgery and surgical training, education, and simulated environments for consumer electronics.

Posters from the Center for Wearable Sensors are listed on page 11.

ABOUT: CENTER FOR WEARABLE SENSORS

The Center for Wearable Sensors brings together top UC San Diego faculty, students and researchers in chemical sensors and biosensors, electrophysiological monitoring, soft electronics and stretchable materials, sensors-electronics integration and fabrication, glucose monitoring, wireless communications, on-body energy harvesting, ultra-low-power instrumentation, data processing, data fusion, and machine learning. This coordinated environment fosters the acceleration of research and system development, and it helps prepare affiliated students to become leaders in the wearable systems workforce.

cws.ucsd.edu
Contemporary analytical algorithms are often focused on functionality and accuracy with system performance as an afterthought. As their use/scale grows and the computing platforms become diverse, spanning from servers and desktops to smartphones and internet of things (IoT) devices, functionality is not just about algorithmic efficiency and accuracy, but also practicality on real-world computing machines. One-size-fits-all solutions will not meet the physical needs of emerging analytical application scenarios. In this talk, I will present our research on novel automated computing frameworks that bring hardware into the loop of designing scalable inference algorithms and learning systems, supported by both theoretical and practical results. Proof-of-concept evaluations on diverse datasets, applications, algorithms, and platforms demonstrate orders of magnitude efficiency compared to the best prior art.
1. A SMART BANDAGE WITH CLOSED-LOOP INTEGRATED DRUG DELIVERY
 Students: Da Ying, Zhenlong Huang | Professors: Drew A. Hall, Sheng Xu

2. THE LANGUAGE OF GLOVE: A WEARABLE WIRELESS GESTURE
 DECODER FOR LOW-POWER, FLEXIBLE AND STRETCHABLE HYBRID
 ELECTRONICS
 Student: Timothy Francis O’connor | Professor: Darren J. Lipomi

3. A WEARABLE CHEMICAL-ELECTROPHYSIOLOGICAL HYBRID BIOSENSING
 SYSTEM FOR REAL-TIME HEALTH AND FITNESS MONITORING
 Students: Somayeh Imani, Amay Bandodkar | Professors: Patrick P. Mercier,
 Joseph Wang

4. CHARACTERIZATION OF NOVEL ORGANIC SHORT WAVELENGTH
 INFRARED PHOTSENSORS
 Student: Weichuan Yao | Professor: Tse Nga Ng

5. MODULAR AND EXTENSIBLE PLATFORM DESIGNS FOR SMART HEALTH
 Student: Christine Shun Yee Chan | Professor: Tajana S. Rosing

6. EYEGLASSES WIRELESS ELECTROCHEMICAL SENSOR PLATFORM
 Student: Juliane R Sempionatto Moreto | Professor: Joseph Wang

7. PRINTED, STRETCHABLE ZINC-SILVER BATTERIES FOR WEARABLE
 ELECTRONICS
 Students: Rajan Kumar, Lin Yin | Professor: Joseph Wang, Ying S. Meng

8. STRETCHABLE BIOFUEL CELLS AS WEARABLE TEXTILE-BASED SELF-
 POWERED SENSORS
 Student: Itthipon Jeerapan | Professor: Joseph Wang

9. TATTOO-BASED WEARABLE IONTOPHORETIC-BIOSENSING DEVICE FOR
 NONINVASIVE ALCOHOL MONITORING
 Students: Jayoung Kim, Itthipon Jeerapan, Somayeh Imani | Professors:
 Joseph Wang, Patrick P. Mercier
CENTER FOR VISUAL COMPUTING

10. ROBUST ENERGY MINIMIZATION FOR BRDF-INVARIANT SHAPE FROM LIGHT FIELDS
 Students: Zhengqin Li, Zexiang Xu | Professors: Manmohan Chandraker, Ravi Ramamoorthi

11. GOOGLE MAP ORIENTED VISUAL NAVIGATION FOR UAVS
 Student: Mo Shan | Professor: Nikolay A. Atanasov

12. DEPTH AND IMAGE RESTORATION FROM LIGHT FIELD IN A SCATTERING MEDIUM
 Student: Zachary Paul Murez
 Professors: David Kriegman, Ravi Ramamoorthi

13. DOWNSAMPLING SCATTERING PARAMETERS FOR RENDERING ANISOTROPIC MEDIA
 Student: Lifan Wu | Professor: Ravi Ramamoorthi

14. MINIMAL BRDF SAMPLING FOR TWO-SHOT NEAR-FIELD REFLECTANCE ACQUISITION
 Student: Zexiang Xu | Professor: Ravi Ramamoorthi

15. 3D FACE RECONSTRUCTION AND FACE ASSISTED VIDEO STABILIZATION
 Student: Jiyang Yu | Professor: Ravi Ramamoorthi

16. MULTIPLE AXIS-ALIGNED FILTERS FOR RENDERING OF COMBINED DISTRIBUTION EFFECTS
 Students: Alexandr Kuznetsov, Lifan Wu, Ling-Qi Yan
 Professor: Ravi Ramamoorthi

17. GRADIENT DOMAIN VERTEX CONNECTION AND MERGING
 Student: Weilun Sun | Professor: Ravi Ramamoorthi

18. PATCH-BASED OPTIMIZATION FOR IMAGE-BASED TEXTURE MAPPING
 Students: Sai Bi, Nima Khademi Kalantari
 Professor: Ravi Ramamoorthi

19. ANALYTIC AREA LIGHTING FOR PRECOMPUTED RADIANCE TRANSFER
 Student: Jingwen Wang | Professor: Ravi Ramamoorthi

20. A UNIFIED MULTI-SCALE DEEP CONVOLUTIONAL NEURAL NETWORK FOR FAST OBJECT DETECTION
 Student: Zhaowei Cai | Professor: Nuno M. Vasconcelos
21. LEARNING TO AUGMENT VISUAL DATA
Student: Mandar Dilip Dixit | Professor: Nuno M. Vasconcelos
<table>
<thead>
<tr>
<th>Project Number</th>
<th>Project Title</th>
<th>Student(s)</th>
<th>Professor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>ELECTROKINETIC FLOW OVER PATTERNED HYDROPHOBIC SURFACES</td>
<td>Bei Fan</td>
<td>Prabhakar R. Bandaru</td>
</tr>
<tr>
<td>23</td>
<td>RECORD EFFICIENCY OF GRAPHENE/SILICON SOLAR CELL WITH PASSIVATED BACK CONTACT</td>
<td>Serdar Yavuz</td>
<td>Prabhakar R. Bandaru</td>
</tr>
<tr>
<td>24</td>
<td>BLAST WAVE REFLECTION PATTERNS</td>
<td>Nicholas Amen</td>
<td>Veronica Eliasson</td>
</tr>
<tr>
<td>25</td>
<td>DYNAMIC FRACTURE BEHAVIOR OF POLYMERIC MATERIALS</td>
<td>Rodrigo Enrique Chavez Morales</td>
<td>Veronica Eliasson</td>
</tr>
<tr>
<td>26</td>
<td>FABRICATION OF MESOPORES ON GOLD-COATED POLYSTYRENE PARTICLES</td>
<td>Seongcheol Choi</td>
<td>Olivia A. Graeve</td>
</tr>
<tr>
<td>27</td>
<td>IN VITRO EVALUATION OF LUMINESCENT RARE-EARTH DOPED HYDROXYAPATITE SCAFFOLDS</td>
<td>Fabian Martin Martinez Pallares</td>
<td>Olivia A. Graeve</td>
</tr>
<tr>
<td>28</td>
<td>CONTROLLING THE SHAPE AND PARTICLE SIZE OF LAB6 NANOSTRUCTURES: A STEP TOWARDS DEVELOPING NEW COMPOSITE MATERIALS</td>
<td>Carlos Ingram Vargas Consuelos</td>
<td>Olivia A. Graeve</td>
</tr>
<tr>
<td>29</td>
<td>FABRICATION AND CHARACTERIZATION OF COMPLEX SIC/SIC FIBER COMPOSITE PROCESSED BY SPARK PLASMA SINTERING (SPS)</td>
<td>Uriel Esaud Perez Jara</td>
<td>Olivia A. Graeve</td>
</tr>
<tr>
<td>30</td>
<td>EFFECTS OF ETHANOL ON AOT/N-HEPTANE REVERSE MICELLE SYSTEMS</td>
<td>Robyn Elizabeth Ridley</td>
<td>Olivia A. Graeve</td>
</tr>
<tr>
<td>31</td>
<td>DIFFUSION STUDIES OF STRUCTURALLY AMORPHOUS METAL FOILS USING MOLECULAR DYNAMICS SIMULATION</td>
<td>Jordan Alexander Campbell</td>
<td>Olivia A. Graeve</td>
</tr>
<tr>
<td>32</td>
<td>SYNTHESIS AND LUMINESCENT CHARACTERIZATION OF CORE-SHELL NANOPHOSPHORS</td>
<td>Jungmin Ha, Jinkyu Han, Chenhui Zhou, Ekaterina Novitskaya, Gustavo Hirata</td>
<td>Joanna M. McKittrick, Olivia A. Graeve</td>
</tr>
</tbody>
</table>
33. IMPACT RESISTANT BIOLOGICAL MATERIALS AND BIOINSPIRED DESIGNS
 Student: Wei Huang | Professor: Joanna M. McKittrick

34. BIODEGRADABLE SPONGY BONE IMPLANTS: STRENGTH THROUGH BIOINSPIRATION
 Student: Michael Brian Frank | Professor: Joanna M. McKittrick

35. COMPARISON OF DEPROTEINIZATION METHODS FOR PORCINE FEMUR CORTICAL BONE
 Student: Frances Yenan Su | Professor: Joanna M. McKittrick

36. STACKED GRAPHENE/NANOSTRUCTURE AS PLASMONIC METAMATERIALS
 Student: Jiaying Wang | Professor: Oscar Vazquez Mena
37. COUPLED THERMAL-MECHANICAL-CONTACT ANALYSIS OF HOT CRACKING IN LASER WELDED LAP JOINTS
Students: Qizhi He, Haoyan Wei | Professor: Jiun-Shyan Chen

38. RECENT ADVANCES IN STABILIZED AND NODALLY INTEGRATED MESHFREE MODELING OF EXTREME EVENTS
Students: Frank Nathan Beckwith, Marco Pasetto, Mathew Reynolds, Tsung-Hui Huang | Professor: Jiun-Shyan Chen

39. REDUCED ORDER MODELING OF FRACTURE
Students: Jonghyuk Baek, Qizhi He | Professor: Jiun-Shyan Chen

40. NEW MESHFREE SIMULATION TECHNIQUES FOR MODELING PENETRATION AND BLAST LOADING
Students: Marco Pasetto, Frank Beckwith, Tsung-Hui Huang, Mathew Reynolds | Professor: Jiun-Shyan Chen

41. MESHFREE HYDRO-MECHANICAL MODELING OF FRACKING PROCESSES IN FLUID-SATURATED POROUS MEDIA
Student: Haoyan Wei | Professor: Jiun-Shyan Chen

42. NON-CONTACT TOMOGRAPHY FOR STRUCTURAL MONITORING AND BIOLOGICAL APPLICATIONS
Student: Sumit Gupta | Professor: Kenneth J. Loh

43. ENGINEERING SCALABLE MULTIFUNCTIONAL AND STIMULI-RESPONSIVE NANOCOMPOSITES
Students: Bo Mi Lee, Long Wang, Sumit Gupta | Professor: Kenneth J. Loh

44. NANOMATERIAL-BASED SENSING OF DISTRIBUTED DAMAGE IN ENGINEERED AND BIOLOGICAL SYSTEMS
Student: Long Wang | Professor: Kenneth J. Loh
45. QUANTIFYING SODIUM MIGRATION IN SILICON NITRIDE FOR EXTENDED SOLAR MODULE LIFETIME
 Student: Jonathan David Scharf | Professor: David Fenning

46. NANOSCALE HALIDE SEGREGATION AND CHARGE COLLECTION WITHIN MIXED-HALIDE PEROVSKITE SOLAR CELLS
 Student: Yanqi Luo | Professor: David Fenning

47. REVISITING THE CONVERSION REACTION VOLTAGE AND THE REVERSIBILITY OF THE CuF2 ELECTRODE IN LI-ION BATTERIES
 Student: Joon Kyo Seo | Professors: Ying S. Meng, Ping Liu, Olivia A. Graeve, Jian Luo, Kesong Yang

48. LIQUEFIED GAS ELECTROLYTES FOR LOW TEMPERATURE ENERGY STORAGE
 Students: Yangyuchen Yang, Joon Kyo Seo | Professor: Ying S. Meng

49. OPTIMAL DISTRIBUTED NONLINEAR BATTERY CONTROL
 Students: Michael Henry Ostertag, Sinan Akyurek | Professor: Tajana S. Rosing

50. THE SIZE-DEPENDENT EDGE AND ODD-EVEN EFFECT ON SINGLE-LAYERED MOS2 NANOSHEETS WITH AND WITHOUT SULFUR VACANCIES
 Student: Paul Hyunggyu Joo | Professor: Kesong Yang

51. ENHANCING SPONTANEOUS MOLECULAR FERROELECTRICITY IN MAPBI3 BY STRAIN/DOPING-INDUCED CELL DEFORMATION: A FIRST-PRINCIPLES STUDY
 Student: Yuheng Li | Professor: Kesong Yang
BIOENGINEERING

52. IMPROVING REPRODUCTIVE SUCCESS: MANIPULATING SPERMATOZOA MOTILITY WITH RED LIGHT
 Student: Kay Wen Chow | Professor: Michael Berns

53. PROBING MECHANOBIOLGy WITH LASER-INDUCED SHOCKWAVES
 Students: Christopher Carmona, Daryl Preece, Linda Shi, Veronica Gomez-Godinez | Professor: Michael Berns

54. CARDIOVASCULAR RESPONSE TO RESUSCITATION WITH ANAEROBICALLY STORED BLOOD
 Student: Alexander Thomas Williams | Professor: Pedro J. Cabrales Arevalo

55. ASSIMILATION OF BIOPHYSICAL NEURONAL DYNAMICS IN NEUROMORPHIC VLSI
 Students: Jun Wang, Abraham Akinin, Daniel Breen | Professor: Gert Cauwenberghs

56. EEG CHANNEL INTERPOLATION USING ELLIPOID GEODESIC LENGTH
 Student: Hristos Courellis | Professor: Gert Cauwenberghs

57. PIPELINED PARALLEL CONTRASTIVE DIVERGENCE FOR CONTINUOUS GENERATIVE MODEL LEARNING
 Students: Bruno Umbria Pedroni, Sadique Sheik | Professor: Gert Cauwenberghs

58. ENZYME-TARGETED NANOPARTICLES FOR DELIVERY TO ISCHEMIC MUSCLE
 Student: Jessica Leigh Ungerleider | Professor: Karen L. Christman

59. HUMANIZED MOUSE MODEL FOR ASSESSING THE HUMAN IMMUNE RESPONSE TO XENOGENEIC AND ALLOGENEIC DECELLULARIZED BIOMATERIALS
 Student: Raymond M Wang | Professor: Karen L. Christman

60. UTILIZING INJECTABLE DECELLULARIZED EXTRACELLULAR MATRIX HYDROGELS FOR THE SLOW RELEASE OF MICRORNAs
 Student: Melissa Jenee Hernandez | Professor: Karen L. Christman

61. 3D COLLAGEN ARCHITECTURE INDUCES VASCULAR MIMICRY IN CANCER CELLS THROUGH A CONSERVED MIGRATORY AND TRANSCRIPTIONAL RESPONSE
 Student: Daniel Ortiz Velez | Professor: Stephanie I. Fraley
62. DIGITAL HIGH RESOLUTION MELT FOR FIRST PASS SCREENING FOR SEPSIS
Students: Mridu Bhashini Sinha, Hannah Mack, Julietta Jupe
Professors: Stephanie I. Fraley, Todd P. Coleman

63. EXTENDED PHOTONIC TRANSFER IN DNA NANOSTRUCTURES
Student: Alaleh Golkar Narenji | Professor: Michael J. Heller

64. RAPID ELECTROPHORETIC METHOD FOR THE DETECTION OF ENZYME ACTIVITIES IN UNPROCESSED BLOOD
Student: Elaine Alexandra Skowronski | Professor: Michael J. Heller

65. TOWARDS PLUG-AND-PLAY BRAIN-STATE DECODING WITH LARGE-SCALE DATA
Student: Chunshu Wei | Professors: Tzyy-Ping Jung, Gert Cauwenberghs

66. A NOVEL MATHEMATICAL MODEL TO SIMULATE CARDIAC BIOMECHANICS
Student: Jessica Caitlin Leon | Professor: Andrew D. Mc Culloch

67. CARDIAC-DISEASES-BASED GENE REGULATORY NETWORK CONSTRUCTION AND APPLICATION
Student: Shulin Cao | Professor: Andrew D. Mc Culloch

68. SYNOVIAL FLUID HYALURONAN FLUCTUATION IN POST-TRAUMATIC OSTEOARTHRITIS: DEPENDENCE ON THE DYNAMIC BALANCE BETWEEN BIOSYNTHESIS, LOSS, AND FLUID FLUX
Student: Aimee Rose Raleigh | Professor: Robert L. Sah

69. AUTODIGESTION IN HEMORRHAGIC SHOCK: A TWO-STEP PROCESS
Student: Asimina S Courelli | Professor: Geert W. Schmid-Schoenbein

70. MODULAR INTEGRATED ORGAN-ON-A-CHIP SYSTEMS FOR CANCER DRUG TESTING
Student: Han Liang Lim | Professor: Shyni Varghese

71. UBISTROKE: A NEUROBEHAVIORAL EVALUATION SYSTEM USING 3D DEPTH TRACKING AND COMPUTER VISION
Student: Vishwajith Ramesh | Professors: Nadir Weibel, Gert Cauwenberghs
72. **TOUCAN: A TRANSLATOR FOR COMMUNICATION TOLERANT MPI APPLICATIONS**
 Student: Sergio Miguel Martin | Professor: Scott B. Baden

73. **AMPLICONARCHITECT: RECONSTRUCTION OF COMPLEX REARRANGEMENTS OF TUMOR GENE AMPLIFICATION**
 Student: Viraj Balkrishna Deshpande | Professor: Vineet Bafna

74. **SHARING AND COMMUNITY CURATION OF MASS SPECTROMETRY DATA WITH GLOBAL NATURAL PRODUCTS SOCIAL MOLECULAR NETWORKING**
 Student: Mingxun Wang | Professor: Nuno F. Bandeira

75. **LEVERAGING CONTEXT TO IMPROVE MACHINE LEARNING CLASSIFICATIONS OF MARINE ZOOPLANKTON**
 Student: Jeffrey Scott Ellen | Professors: Charles Elkan, Lawrence K. Saul, Zhuowen Tu, Nuno M. Vasconcelos, Mark Ohman

76. **IDENTIFYING AT-RISK STUDENTS BEFORE IT IS LATE**

77. **LETS GO(LANG) REAL-TIME**
 Student: Ashish Kashinath | Professor: Rajesh Gupta

78. **PIBLE: BATTERY-FREEMOTE FOR PERPETUAL INDOOR APPLICATIONS**
 Student: Francesco Fraternali | Professor: Rajesh Gupta

79. **RESISTIVE BLOOM FILTERS: FROM APPROXIMATE MEMBERSHIP TO APPROXIMATE COMPUTING WITH BOUNDED ERRORS**
 Student: Vahideh Akhlaghi | Professor: Rajesh Gupta

80. **THROUGHPUT OPTIMIZATION FOR HIGH-LEVEL SYNTHESIS USING RESOURCE-AWARE REGULARITY EXTRACTION**
 Student: Atieh Lotfi | Professor: Rajesh Gupta

81. **DETERMINING BURNING POTENTIALS FOR WILDFIRES**
 Student: Sumedha Khatter | Professors: Trey Ideker, Ilkay Altintas

82. **IMPROVED PRIM-DIJKSTRA TRADEOFFS FOR HIGH PERFORMANCE VLSI ROUTING**
 Students: Sriram Venkatesh, Sriram Venkatesh | Professor: Andrew B. Kahng
83. A GROUND TRUTH 3D VIDEO DATA SET FOR AUGMENTED REALITY ROBOTIC MIS ALGORITHMS
Student: Michael Joseph Barrow | Professor: Ryan Kastner

84. BACKGROUND SUBTRACTION FOR NEUROMORPHIC IMAGE SENSORS
Student: Alireza Khodamoradi | Professor: Ryan Kastner

85. HIGHER ORDER FUNCTIONS FOR INTRODUCTORY HARDWARE DEVELOPMENT
Student: Dustin Alexander Richmond | Professor: Ryan Kastner

86. INTELLIGENT DESIGN SPACE EXPLORATION OF HARDWARE-ACCELERATED SLAM ALGORITHMS
Students: Quentin Kevin Gautier, Alric Althoff | Professor: Ryan Kastner

87. INFORMATION FLOW TRACKING FOR PROVABLY SECURE HARDWARE DESIGN
Student: Armaiti Ardestiricham | Professor: Ryan Kastner

88. LEVERAGING THE OCEAN’S AMBIENT SOUNDSCAPE TO LOCALIZE SUBSEA DRIFTERS
Student: Perry W Naughton | Professor: Ryan Kastner

89. SURPRISE: A PROBABILISTIC METRIC OF HARDWARE DESIGN SPACE COMPLEXITY
Student: Alric Joseph Althoff | Professor: Ryan Kastner

90. CREATING SCIENTISTS WITH ONLINE LEARNING
Students: Vineet Pandey, Chen Yang | Professor: Scott R. Klemmer

91. PROBABILITIES TO BALANCES: AN ALTERNATIVE APPROACH
Student: James Tong Morton | Professor: Rob Knight

92. VISUALLY-AWARE FASHION RECOMMENDATION AND DESIGN WITH GENERATIVE IMAGE MODELS
Student: Wangcheng Kang | Professor: Julian J. McAuley

93. MULTIPLE SEQUENCE ALIGNMENTS FOR ULTRA-LARGE REFERENCE 16S DATASETS: COMBINING A DIVIDE-AND-CONQUER FRAMEWORK WITH RNA STRUCTURAL MODELS
Student: Uyen To Mai | Professor: Siavash Mirarab (Mir Arabbaygi)

94. A COMPUTATIONAL MODELING APPROACH OF USER BEHAVIOR FOR SWARM CONTROL APPLICATIONS
Student: Dhanesh Girish Pradhan | Professor: Tajana S. Rosing
95. A CONTEXT-DRIVEN IOT MIDDLEWARE ARCHITECTURE
 Student: Bekhzod Soliev | Professor: Tajana S. Rosing

96. AUTONOMOUS DETECTION AND MAPPING OF ANOMALOUS AIR QUALITY EVENTS
 Student: Kanza Khan | Professor: Tajana S. Rosing

97. APPROXIMATION FOR ENERGY EFFICIENT COMPUTING
 Student: Mohsen Imani | Professor: Tajana S. Rosing

98. IN-MEMORY PROCESSING FOR DATA INTENSIVE APPLICATIONS
 Student: Saransh Gupta | Professor: Tajana S. Rosing

99. OPTIMAL PACKET AGGREGATION IN WIRELESS NETWORKS
 Students: Mihir Rajan Patanker, Alper SinanAkyurek
 Professor: Tajana S. Rosing

100. PHASE-BASED POWER PREDICTION FOR HETEROGENOUS COMPUTING ECOSYSTEMS
 Student: Yeseong Kim | Professor: Tajana S. Rosing

101. RESISTIVE CAM ACCELERATION FOR TUNABLE APPROXIMATE COMPUTING
 Student: Daniel Nikolai Peroni | Professor: Tajana S. Rosing

102. STOP THAT JOIN! DISCARDING DIMENSION TABLES WHEN LEARNING HIGH CAPACITY CLASSIFIERS
 Student: Vraj Paragbhai Shah | Professor: Arun Kumar

103. GADGETRON: DECLARATIVE DESIGN OF MECHATRONIC AND CYBERPHYSICAL DEVICES
 Student: Devon James Merrill | Professor: Steven J. Swanson

104. MIXED REALITY APPLICATIONS IN SURGICAL ENVIRONMENTS
 Student: Danilo Gasques Rodrigues | Professor: Nadir Weibel

105. RE-IMAGINING EMBODIED MULTIMODAL MEANING MAKING THROUGH COMPUTATIONAL ETHNOGRAPHY
 Student: Steven Robert Rick | Professor: Nadir Weibel
ELECTRICAL & COMPUTER ENGINEERING

106. MIMO 2PJ/MAC 14-B 8X8 LINEAR TRANSFORM MIXED-SIGNAL SPATIAL FILTER IN 65NM CMOS WITH 84 DB INTERFERENCE SUPPRESSION
 Students: Siddharth Joshi, Chul Kim, Sohmyung Ha | Professor: Gert Cauwenberghs

107. IMPROVING MOTOR IMAGERY BRAIN COMPUTER INTERFACES WITH USER RESPONSE TO FEEDBACK
 Student: Mahta Mousavi | Professor: Virginia De Sa

108. ELECTRO-OPTICAL MECHANICALLY FLEXIBLE (EO-FLEX) NANOPROBES
 Students: Spencer Patrick Ward, Conor Riley | Professors: Sadik C. Esener, Donald J. Sirbuly

109. HYBRID MULTIMODE RESONATORS BASED ON GRATING ASSISTED COUNTER-DIRECTIONAL COUPLERS
 Student: Jordan Austin Davis | Professor: Y. Shaya Fainman

110. SELF-ORGANIZED SEGREGATION ON THE GRID
 Student: Hamed Omidvar | Professor: Massimo Franceschetti

111. DEEP LEARNING METHODS FOR ANALYZING NEURAL DATA
 Student: Fnu Pailla-Tejaswy | Professor: Vikash Gilja

112. PROTEASE-BASED MAGNETIC SENSOR FOR RAPID DETECTION OF CANDIDEMIA
 Student: Sonal Jain | Professors: Drew A. Hall, Anthony O’Donoghue

113. OPTIMUM LOGIC SYNTHESIS CONSTRAINTS FOR IC PHYSICAL IMPLEMENTATION
 Student: Tushar Shah | Professor: Andrew B. Kahng

114. A PATHFINDING TOOL FOR 3D VLSI TECHNOLOGY AND DESIGN
 Student: Ahmed Taha Elthakeb Youssef | Professor: Andrew B. Kahng

115. VERTICAL M1 ROUTING-AWARE DETAILED PLACEMENT FOR CONGESTION AND WIRELENGTH REDUCTION IN SUB-10NM NODES
 Students: Lutong Wang, Kwangsoo Han, Hyein Lee | Professor: Andrew B. Kahng

116. SHAPING AND STEERING OF SURFACE LASER BEAM CARRYING ORBITAL ANGULAR MOMENTUM
 Student: Babak Bahari | Professor: Boubacar Kante
117. FAST AND ROBUST SPARSE BAYESIAN LEARNING FOR EEG SOURCE IMAGING
Student: Alejandro Ojeda | Professor: Kenneth Kreutz-Delgado

118. A MULTI-MODAL SYSTEM FOR CLOSED-LOOP OPTOGENETICS IN BEHAVING ANIMALS
Students: Xin Liu, Yichen Lu, Ege Iseri, Sravya Alluri | Professor: Duygu Kuzum

119. FLEXIBLE POROUS GRAPHENE ELECTRODES WITH LOW IMPEDANCE AND HIGH CHARGE INJECTION CAPACITY FOR CORTICAL SENSING AND STIMULATION
Student: Yichen Lu | Professor: Duygu Kuzum

120. TRAINING AND OPERATION OF THE SPIKING NEURON NETWORK BASED ON CBRAM
Student: Yuhan Shi, Leon Nguyen | Professor: Duygu Kuzum

121. A 4.5 NW WAKE-UP RADIO WITH -69DBM SENSITIVITY
Students: Po-Han Wang, Haowei Jiang | Professors: Patrick P. Mercier, Drew A. Hall, Gabriel M. Rebeiz, Young-Han Kim

122. CONTINUOUS SELF-CALIBRATING EYE GAZE TRACKING FOR VIRTUAL REALITY SYSTEMS
Student: Subarna Tripathi | Professors: Truong Nguyen, Serge J. Belongie

123. VIEW SYNTHESIS WITH HIERARCHICAL CLUSTERING BASED OCCLUSION FILLING
Student: Ji Dai | Professor: Truong Nguyen

124. EMERGING VERTICAL NANOWIREFET TECHNOLOGY FOR ENERGY EFFICIENT COMPUTING
Student: Joonseop Sim | Professor: Tajana S. Rosing

125. FIELD ENHANCEMENT IN PLASMONIC NANOSTRUCTURES
Student: Shiva Piltan | Professor: Daniel F. Sievenpiper

126. SELF-CATALYZED CORE-SHELL GAAS/GANAS NANOWIRES GROWN ON PATTERNED SI (111) BY GAS-SOURCE MOLECULAR BEAM EPITAXY
Student: Rui La | Professor: Charles W. Tu

127. LINEAR NETWORK CODING OVER RINGS
Student: Joseph Michael Connelly | Professor: Kenneth A. Zeger
MECHANICAL & AEROSPACE ENGINEERING

128. CHARACTERIZING NON LINEAR EFFECTS IN LOW COST MOTORS
Student: Daniel Jiaji Yang | Professor: Thomas R. Bewley

129. DERIVATIVE-FREE GLOBAL OPTIMIZATION METHOD WITH INEXACT FUNCTION EVALUATIONS
Student: Shahrouz Alimohammadi, Muhan Zhao, Pooriya Beyhaghi
Professor: Thomas R. Bewley

130. DYNAMIC MODEL AND CONTROL OF A MICRO BALL-BALANCING ROBOT WITH HIGH YAW RATE
Student: Eric Nauali Sihite | Professor: Thomas R. Bewley

131. TRAJECTORY PLANNING FOR MAXIMIZING THE PROBABILITY OF FINDING AN OBJECT INSIDE A BOUND DOMAIN
Students: Abhishek Subramanian, Shahrouz Alimohammadi
Professor: Thomas R. Bewley

132. CONTINUOUS 3D PRINTING OF BIOGENIC POLYURETHANES
Student: Pengrui Wang | Professor: Shaochen Chen

133. PMU-BASED MICROGRID POWER CONTROL OVER THE INTERNET WITH REAL-TIME GRID SIMULATION
Student: Amir Valibeygi | Professor: Raymond A. De Callafon

134. NON-INVASIVE QUANTITATIVE METHOD FOR MEASURING REGIONAL CARDIAC FUNCTION.
Student: Ashish Manohar | Professor: Juan Carlos Del Alamo

135. THE CIRCULATION OF THE CEREBROSPINAL FLUID (CSF) IN THE SPINAL CANAL
Student: Ernesto Criado Hidalgo | Professors: Juan Carlos Del Alamo, Juan C. Lasheras

136. EXPANDING CARDIOPULMONARY SHUNT
Student: Edward Aminov | Professor: James R. Friend

137. NEUROTENDO: NINTENDO FOR NEUROINTERVENTIONISTS
Student: Gopesh Chaitanyaku Tilvawala | Professor: James R. Friend

138. CHARACTERIZING SOLAR THERMAL ENERGY STORAGE SYSTEMS
Student: Andrew Zigang Zhao | Professor: Javier E. Garay
139. PREPARATION OF RARE EARTH STABILIZED NANOCRYSTALLINE ZIRCONIA WITH TUNABLE OPTICAL/MECHANICAL PROPERTIES
Student: Gottlieb Hangula Uahengo | Professor: Javier E. Garay

140. SYNTHESIS AND PROCESSING OF NANOCRYSTALLINE ALUMINUM NITRIDE FOR HIGH POWERED LASER APPLICATIONS
Student: Matthew Adalberto Duarte | Professor: Javier E. Garay

141. POLYMER-BASED RETROGRADE NANO-TRACERS AS TOOLS FOR NEUROANATOMY
Student: Nanzhi Zang | Professor: Nathan Gianneschi

142. EXPERIMENTAL DEMONSTRATION OF A SUB-SCALE HYDROKINETIC TURBINE
Student: Spencer Riley Ellis | Professor: John B. Kosmatka

143. MODAL MODELING VIA FIBER OPTIC STRAIN SENSING FOR APPLICATIONS IN STRUCTURAL HEALTH MONITORING
Student: Benjamin Levi Martins | Professor: John B. Kosmatka

144. BLOBS AND DRIFT WAVE DYNAMICS
Student: Yanzeng Zhang | Professor: Sergei Krasheninnikov

145. ADAPTIVE OUTPUT FEEDBACK FOR FLOW-INDUCED VIBRATIONS OF A MEMBRANE AT HIGH MACH NUMBERS
Student: Huan Yu | Professor: Miroslav Krstic

146. CONTROL AND ESTIMATION OF THE LIQUID-SOLID INTERFACE IN A PHASE CHANGE MATERIAL
Student: Shumon Koga | Professor: Miroslav Krstic

147. STABILIZATION OF AN UNDERACTUATED TRANSPORT-WAVE PDE SYSTEM
Student: Stephen Chen | Professor: Miroslav Krstic

148. TRAJECTORY OPTIMIZATION OF 7-DOF BAXTER ROBOT’S ARM
Student: Mostafa Bagheri | Professors: Miroslav Krstic, Peiman Naseradinmousavi

149. HIGHLY SPECIFIC SNP DETECTION USING GRAPHENE ELECTRONICS AND DNA STRAND DISPLACEMENT
Student: Michael Taeyoung Hwang | Professor: Ratneshwar Lal
150. AVOIDING BRAIN INJURY: A STRUCTURAL ROLE OF THE FRONTAL OVERHANG ON THE SKULL BONE OF WOODPECKERS
Student: Jae-young Jung | Professors: Joanna M. McKittrick, Marc A. Meyers

151. MICROSTRUCTURAL ORIGINS OF THE DYNAMIC BEHAVIOR OF WOOD
Student: Albert Keisuke Matsushita | Professor: Joanna M. McKittrick

152. REINFORCEMENTS IN AVIAN WING BONES: EXPERIMENTS, ANALYSIS, AND MODELING
Students: Sean Nolan Garner, Keisuke Matsushita | Professor: Joanna M. McKittrick

153. A FUNCTIONAL NATURAL ADHESIVE: THE FEATHER VANE AND INSPIRED DESIGNS
Student: Tarah Naoe Sullivan | Professor: Marc A. Meyers

154. DISCOVERING THE PROTECTION MECHANISM FOR THE ‘LIVING FOSSIL’ COELACANTH
Student: Haocheng Quan | Professor: Marc A. Meyers

155. NON-EQUILIBRIUM SIMULATIONS OF SHOCK-INDUCED HORIZONTAL DEFECTS AND AMORPHIZATION IN 4H SILICON CARBIDE
Student: Rachel Marie Flanagan | Professor: Marc A. Meyers

156. ON THE PRESSURE INDUCED AMORPHIZATION AND NANOCRYSTALLIZATION OF SEMICONDUCTING MATERIALS AND ITS POTENTIAL APPLICATIONS
Student: Shiteng Zhao | Professor: Marc A. Meyers

157. TRI-DIMENSIONAL PRINTING AS AN ADVANCED TECHNIQUE IN MANUFACTURING BIOINSPIRED MATERIALS
Student: Audrey Josephina Velasco-Hogan | Professor: Marc A. Meyers

158. VISCOELASTIC RESPONSE OF PIG SKIN UNDER TENSION - A MACROSCOPIC APPROACH USING IMAGE PROCESSING TECHNIQUES
Student: Andrei Pissarenko | Professor: Marc A. Meyers

159. EFFECT OF ELECTRIC CURRENT ON DENSIFICATION MECHANISM OF ZIRCONIUM NITRIDECONSOLIDATED BY SPARK PLASMA SINTERING
Student: Geuntak Lee | Professors: Eugene Olevsky, Joanna M. McKittrick

160. DESIGN PRINCIPLES OF PLEIOTROPIC G-PROTEIN SIGNALING THROUGH GEMS
Student: Michael C Getz | Professor: Padmini Rangamani
161. RADIAL FORCES IN MEMBRANE NECKING
Students: Ritvik Vasan, Haleh Alimohmadi | Professor: Padmini Rangamani

162. TWEAKING THE IMMUNE SYSTEM: TARGETED FUSOGENIC NANOPARTICLES FOR IMMUNOGENE THERAPY AGAINST BACTERIAL INFECTION
Student: Byungji Kim | Professor: Michael Sailor

163. FLAMES... OUT OF THIS WORLD
Student: Luca Carmignani | Professor: Kalyanasundaram Seshadri

164. A SURFACE ENHANCED RAMAN SPECTROSCOPY INVESTIGATION OF HEAT ASSISTED MAGNETIC RECORDING
Student: Benjamin Ying-Xiu Suen | Professor: Frank E. Talke

165. DEVELOPMENT OF AN INTRAOCULAR PRESSURE MEASUREMENT SYSTEM
Students: Alex Minh Giang Phan, Phuong Truong, Alexander Kief Professor: Frank E. Talke

166. ESOPHAGEAL DEFLECTION DEVICE FOR USE DURING TREATMENT OF ATRIAL FIBRILLATION
Student: Karcher William Morris | Professor: Frank E. Talke

167. INVESTIGATION OF CONTAMINATION AT THE HEAD-DISK INTERFACE IN TODAY’S HARD DISK DRIVES
Student: Young Woo Seo | Professor: Frank E. Talke

168. 3D PRINTED SOFT ACTUATORS FOR A LEGGED ROBOT CAPABLE OF NAVIGATING UNSTRUCTURED TERRAIN
Student: Dylan T. Drotman | Professor: Michael T. Tolley

169. A SOFT ROBOTIC GRIPPER CAPABLE OF IN-HAND MANIPULATION AUGMENTED WITH SOFT SENSOR SKIN FOR TACTILE SENSING
Student: Benjamin Shih | Professor: Michael T. Tolley, Henrik I. Christensen

170. SOFT ROBOTIC GLOVE FOR HAPTIC FEEDBACK IN VIRTUAL ENVIRONMENTS
Students: Saurabh Subhash Jadhav, Vikas Kannanda, Bocheng Kang Professor: Michael T. Tolley

171. A STUDY OF A NEW RECOMBINATION PROCESS OF D2 PLASMA MEDIATED BY ND3 MOLECULES
Student: Shota Abe | Professor: George R. Tynan
172. CHARACTERIZATION OF MICROSTRUCTURE AND MATERIAL PROPERTIES OF DIRECT LASER DEPOSITED NI-ALLOY 625
Students: Paresh Mukhedkar, Kevin Kaufmann, Tyler Harrington
Professor: Kenneth S. Vecchio

173. IRON-ALUMINUM METALLIC-INTERMETALLIC LAMINATE (MIL) COMPOSITES
Students: Haoren Wang, Xiao Liu | Professor: Kenneth S. Vecchio

174. PHASE STABILITY DEPENDENCE OF DEFORMATION MICROSTRUCTURE AND MECHANICAL PROPERTIES IN TI-NB GUM METAL
Student: Sumin Shin | Professor: Kenneth S. Vecchio
175. CONTINUOUS OPTICAL PRINTING OF CELL-LADEN CONSTRUCTS WITHIN MICROFLUIDIC ARCHITECTURES
Student: Justin David Liu | Professor: Shaochen Chen

176. A NOVEL DIELECTROPHORESIS PLATFORM FOR THE ISOLATION OF EXTRACELLULAR VESICLES
Student: Lennart Langouche | Professors: Sadik C. Esener, Michael J. Heller

177. RAPID SAMPLE TO ANSWER DIAGNOSTICS FOR TRAUMATIC BRAIN INJURY
Student: Benjamin Gabriel Sarno | Professor: Michael J. Heller

178. RAPID ON-CHIP ISOLATION AND DETECTION OF PANCREATIC CANCER EXOSOME BIOMARKERS
Student: Augustine Chidi Obirieze | Professors: Michael J. Heller, Sadik C. Esener

179. REAL TIME ULTRASOUND-BASED MEASUREMENTS OF CLOTTING TIME AND IMPLANTABLE SENSOR FOR THERAPEUTIC DRUG MONITORING OF HEPARIN
Student: Junxinx Wang | Professor: Jesse V. Jokerst

180. THE CHARACTERIZATION OF NOVEL, AFFORDABLE AND COMPACT LED-BASED PHOTOACOUSTIC IMAGING SYSTEM TO FACILITATE MOLECULAR IMAGING
Student: Ali Hariri | Professor: Jesse V. Jokerst

181. THE FUTURE OF IMAGING
Student: Jeanne Elizabeth Lemaster | Professor: Jesse V. Jokerst

182. STRUCTURE AND MECHANICAL BEHAVIOR OF HUMAN HAIR
Student: Yang Yu | Professor: Marc A. Meyers

183. DESIGN AND APPLICATION OF PIEZOELECTRIC COMPOSITE MATERIALS AND DEVICES
Student: James Lance Middlebrook | Professor: Donald J. Sirbuly

184. CHARACTERIZATION OF BSA ADSORPTION ON HETEROGENEOUSLY PEGYLATED AG NPS
Student: Madhura Som | Professor: Andrea R. Tao
185. PLASMON ENHANCED NONLINEAR OPTICAL NANO DEVICE AND MATERIALS
Student: Yuan Zeng | Professor: Andrea R. Tao

186. SUBMERSIBLE SOFT ROBOTICS DRIVEN BY FLUID ELECTRODE-DIELECTRIC ELASTOMER ACTUATORS
Student: Caleb Michael Christianson | Professor: Michael T. Tolley

187. DEVELOPMENT OF FE-NI-CO-AL-BASED SUPERELASTIC ALLOYS
Student: Cheng Zhang | Professor: Kenneth S. Vecchio

188. DETERMINATION OF GEOMETRICALLY NECESSARY DISLOCATIONS IN LARGE SHEAR STRAIN LOCALIZATION IN METALS
Student: Chaoyi Zhu | Professor: Kenneth S. Vecchio

189. FABRICATION OF HIGH ENTROPY CERAMICS: NITRIDES AND CARBONITRIDES
Student: Olivia Faye Dippo | Professor: Kenneth S. Vecchio

190. MODULATING CRYSTALLINITY OF A TI-ZR-BASED BULK METALLIC GLASS MATRIX COMPOSITE
Student: Kevin Richard Kaufmann | Professor: Kenneth S. Vecchio

191. MODELING AND FABRICATION OF A NEW CLASS OF HIGH-ENTROPY REFRACTORY INTERSTITIAL CARBIDES
Student: Tyler James Harrington | Professor: Kenneth S. Vecchio

192. MOLYBDENUM DISULFIDE-BASED TUBULAR MICROENGINES: TOWARD BIOMEDICAL APPLICATIONS
Students: Emil Karshalev, Isaac Campso, Roxanne Castillo
Professor: Joseph Wang

193. NEW ADVANCES IN ACOUSTICALLY PROPELLED NANOMOTORS
Student: Fernando Soto | Professor: Joseph Wang

194. FIRST-PRINCIPLES PREDICTION OF TWO-DIMENSIONAL ELECTRON GAS DRIVEN BY POLARIZATION DISCONTINUITY IN NONPOLAR/NONPOLAR AHFO3/SRTIO3 (A=CA, SR, AND BA) HETEROSTRUCTURES
Student: Jianli Cheng | Professor: Kesong Yang

195. POLARIZATION EFFECTS ON THE INTERFACIAL CONDUCTIVITY IN THE LAO/STO HETEROSTRUCTURE: FIRST-PRINCIPLES STUDY
Student: Maziar Alexander Behtash | Professor: Kesong Yang
196. ERYTHROCYTE-PLATELET HYBRID MEMBRANE COATING FOR ENHANCED NANOPARTICLE FUNCTIONALIZATION
Student: Diana Dorothy Nader Dehaini | Professor: Liangfang Zhang

197. RED BLOOD CELL MEMBRANE-COATED NANOGEL FOR COMBINATORIAL ANTIVIRULENCE AND RESPONSIVE ANTIMICROBIAL DELIVERY AGAINST MRSA INFECTION
Student: Yue Zhang | Professor: Liangfang Zhang
198. ISOGEOMETRIC ANALYSIS FOR THE PREDICTION OF DAMAGE GROWTH IN COMPOSITE LAMINATES
Student: Marco Simone Pigazzini | Professor: Yuri Bazilevs

199. FLAPPING UNMANNED AERIAL SYSTEMS: NONLINEAR AEROELASTIC ANALYSIS
Student: Enrico Santarpia | Professors: Luciano Demasi, Jiun-Shyan Chen

200. HIGH ENERGY, WIDE AREA BLUNT IMPACTS IN CARBON FIBER REINFORCED AEROSPACE STRUCTURES
Student: Chaiane Wiggers De Souza | Professor: Hyonny Kim

201. FAST LEVEL SET TOPOLOGY OPTIMIZATION USING A HIERARCHICAL DATA STRUCTURE
Student: Carolina Miranda Jauregui | Professor: Hyunsun A. Kim

202. VIBRATION DAMPING OF COMPOSITES WITH CARBON NANOTUBES
Student: Andrew Ming Fann | Professor: John B. Kosmatka

203. MEAN-STRAIN QUADRATIC 10-NODE TETRAHEDRON WITH QUASI-OPTIMAL ENERGY STABILIZATION FOR NONLINEAR DEFORMATION
Student: Phi Quoc Nguyen | Professor: Petr Krysl

204. HIGH-SPEED NON-CONTACT PASSIVE-ONLY ULTRASONIC INSPECTION OF RAILS FROM DECONVOLUTIONS OF WHEEL-GENERATED NOISE
Students: Albert Yi-Ling Liang, Xuan Zhu, Simone Sternini, Margherita Capriotti | Professor: Francesco Lanza Di Scalea

205. NON-DESTRUCTIVE EVALUATION METHOD FOR DETECTING MAJOR DAMAGE IN INTERNAL COMPOSITES STRUCTURAL COMPONENTS
Students: Margherita Capriotti, Eric Kim | Professors: Francesco Lanza Di Scalea, Hyonny Kim

206. PUSHING THE LIMITS OF ULTRASONIC IMAGING OF SOLIDS BY WAVE MODE BEAMFORMING AND GPU PROCESSING
Students: Simone Sternini, Albert Liang | Professor: Francesco Lanza Di Scalea

207. ESTIMATE OF THE POTENTIAL OF USE OF A MUNICIPAL SOLID WASTE LANDFILL AS A SOURCE OF THERMAL ENERGY
Student: Leticia Maria Nocko | Professor: John S. McCartney
208. EARTHQUAKE PERFORMANCE OF MECHANICALLY STABILIZED EARTH BRIDGE ABUTMENTS
Student: Yewei Zheng | Professors: John S. McCartney, Pui-Shum Shing

209. THERMAL IMPROVEMENT OF OFFSHORE FOUNDATION RESPONSE IN SOFT CLAYS
Student: Ismaail Ghaoaoed | Professor: John S. McCartney

210. CYCLIC PERFORMANCE CHARACTERIZATION OF LARGE DIAMETER REINFORCING STEEL BARS AND MECHANICAL COUPLERS
Student: David Elias Duck Rodriguez | Professor: Jose I. Restrepo

211. COLLAPSE VULNERABILITY OF REINFORCED MASONRY STRUCTURES UNDER SEISMIC LOADING
Student: Andreas Koutras | Professor: Pui-Shum Shing

212. NONLINEAR MODELING OF REINFORCED MASONRY STRUCTURES
Student: Jianyu Cheng | Professor: Pui-Shum Shing

213. RECONSTRUCTION OF THE THREE-DIMENSIONAL SHAPE OF SLENDER ROD LIKE STRUCTURE-AN APPLICATION OF COSSERAT BEAM THEORY
Student: Mayank Chadha | Professor: Michael D. Todd

214. REUSE OF ABANDONED OIL AND GAS WELLS FOR GEOTHERMAL ENERGY PRODUCTION
Student: Robert Alexander Caulk | Professor: Ingrid Tomac

215. CLASSIFICATION OF FAILURE MODE AND PLASTIC HINGE FORMATION OF STEEL WIDE-FLANGE BEAM-COLUMNS
Student: Gulen Ozkula | Professor: Chia-Ming Uang

216. EXPERIMENTAL VERIFICATION OF A PROCEDURE FOR SMF CONTINUITY PLATE WELD DESIGN
Student: Adel Mashayekh | Professor: Chia-Ming Uang
JACOBS SCHOOL ACADEMIC DEPARTMENTS

<table>
<thead>
<tr>
<th>Department</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering</td>
<td>be.ucsd.edu</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>cse.ucsd.edu</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>ece.ucsd.edu</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering</td>
<td>maeweb.ucsd.edu</td>
</tr>
<tr>
<td>NanoEngineering</td>
<td>ne.ucsd.edu</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>structures.ucsd.edu</td>
</tr>
</tbody>
</table>

AGILE RESEARCH CENTERS

<table>
<thead>
<tr>
<th>Research Center</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaliBaja Center for Resilient Materials and Systems</td>
<td>resilientmaterials.ucsd.edu</td>
</tr>
<tr>
<td>Center for Engineered Natural Intelligence</td>
<td>CENI.ucsd.edu</td>
</tr>
<tr>
<td>Center for Extreme Events Research</td>
<td>CEER.ucsd.edu</td>
</tr>
<tr>
<td>Center for Microbiome Innovation</td>
<td>Microbiome.ucsd.edu</td>
</tr>
<tr>
<td>Center for Visual Computing</td>
<td>VisComp.ucsd.edu</td>
</tr>
<tr>
<td>Center for Wearable Sensors</td>
<td>WearableSensors.ucsd.edu</td>
</tr>
<tr>
<td>CHO Systems Biology Center</td>
<td>CHO.ucsd.edu</td>
</tr>
<tr>
<td>Sustainable Power and Energy Center</td>
<td>SPEC.ucsd.edu</td>
</tr>
</tbody>
</table>

AFFILIATED RESEARCH INSTITUTES

<table>
<thead>
<tr>
<th>Research Institute</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for Energy Research</td>
<td>CER.ucsd.edu</td>
</tr>
<tr>
<td>Center for Memory & Recording Research</td>
<td>CMRR.ucsd.edu</td>
</tr>
<tr>
<td>Center for Networked Systems</td>
<td>CNS.ucsd.edu</td>
</tr>
<tr>
<td>Center for Wireless Communications</td>
<td>CWC.ucsd.edu</td>
</tr>
<tr>
<td>Contextual Robotics Institute</td>
<td>ContextualRobotics.ucsd.edu</td>
</tr>
<tr>
<td>Cymer Center for Control Systems and Dynamics</td>
<td>CCSD.ucsd.edu</td>
</tr>
<tr>
<td>Deep Decarbonization Initiative</td>
<td>DeepDecarbon.ucsd.edu</td>
</tr>
<tr>
<td>Information Theory & Applications Center</td>
<td>ITA.ucsd.edu</td>
</tr>
<tr>
<td>Institute for the Global Entrepreneur</td>
<td>IGE.ucsd.edu</td>
</tr>
<tr>
<td>Institute of Engineering in Medicine</td>
<td>IEM.ucsd.edu</td>
</tr>
<tr>
<td>Powell Structural Research Labs</td>
<td>Structures.ucsd.edu</td>
</tr>
<tr>
<td>Qualcomm Institute (Calit2 at UC San Diego)</td>
<td>CalIT2.net</td>
</tr>
<tr>
<td>San Diego Supercomputer Center</td>
<td>www.sdsc.edu</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Rahul Ahlawat</td>
<td>ASML/CYMER</td>
</tr>
<tr>
<td>Steven Auerbach</td>
<td>Leidos</td>
</tr>
<tr>
<td>Alejandro Barajas</td>
<td>Envision Engineering</td>
</tr>
<tr>
<td>Justin Boggs</td>
<td>Oracle</td>
</tr>
<tr>
<td>Aarash Bordbar</td>
<td>Sinopia Biosciences</td>
</tr>
<tr>
<td>Laura Cervino</td>
<td>UC San Diego</td>
</tr>
<tr>
<td>Greg Chauncey</td>
<td></td>
</tr>
<tr>
<td>Jaime Chen</td>
<td>Kaiser Permanente</td>
</tr>
<tr>
<td>Sung Hwan Cho</td>
<td>NanoCellect Biomedical</td>
</tr>
<tr>
<td>Ted Clowes</td>
<td></td>
</tr>
<tr>
<td>Patrick Convery</td>
<td>Raytheon</td>
</tr>
<tr>
<td>Nolan Davis</td>
<td>Leidos</td>
</tr>
<tr>
<td>Silvia De Dea</td>
<td>ASML/CYMER</td>
</tr>
<tr>
<td>Jessica DeQuach</td>
<td>Ventrix, Inc.</td>
</tr>
<tr>
<td>Nik Devereaux</td>
<td>ViaSat</td>
</tr>
<tr>
<td>Raheleh Dilmaghani</td>
<td></td>
</tr>
<tr>
<td>Gary Dorrance</td>
<td>SPAWAR Systems Center Retired</td>
</tr>
<tr>
<td>Travis Downing</td>
<td>Southern California Design Co.</td>
</tr>
<tr>
<td>Wayne Dunstan</td>
<td>ASML/CYMER</td>
</tr>
<tr>
<td>Steven Ehlers</td>
<td>General Atomics</td>
</tr>
<tr>
<td>Mallory Embree</td>
<td>Ascus Biosciences</td>
</tr>
<tr>
<td>Robert Ferencz</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>Piraj Fozoonmayeh</td>
<td>ASML/CYMER</td>
</tr>
<tr>
<td>Karl Francis</td>
<td>Illumina</td>
</tr>
<tr>
<td>Alex Gantman</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>Brett Gardner</td>
<td>NAVAIR</td>
</tr>
<tr>
<td>Maryam Gholami</td>
<td>UC San Diego</td>
</tr>
<tr>
<td>Matthew Graham</td>
<td>ASML/CYMER</td>
</tr>
<tr>
<td>Sarah Guthals</td>
<td>GitHub and We Can</td>
</tr>
<tr>
<td>Kathy Hayashi</td>
<td>Qualcomm and IEEE</td>
</tr>
<tr>
<td>Matthew Hedayat</td>
<td>STG</td>
</tr>
<tr>
<td>Lazaro Herrera</td>
<td>County of San Diego</td>
</tr>
<tr>
<td>Leo Holland</td>
<td>General Atomics</td>
</tr>
<tr>
<td>David Hutches</td>
<td>UC San Diego Jacobs School of Engineering</td>
</tr>
<tr>
<td>Robin Ihnfeldt</td>
<td>General Engineering & Research</td>
</tr>
<tr>
<td>Ali Irturk</td>
<td>Cognex Corporation</td>
</tr>
<tr>
<td>Name</td>
<td>Company</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Rahul Kapadia</td>
<td>ASML/CYMER</td>
</tr>
<tr>
<td>George Khoury</td>
<td>ViaSat</td>
</tr>
<tr>
<td>Dan Kline</td>
<td>NOVO Engineering, Inc.</td>
</tr>
<tr>
<td>Sam Knight</td>
<td>LocationSmart</td>
</tr>
<tr>
<td>Michael Krupp</td>
<td>Xfibra Inc.</td>
</tr>
<tr>
<td>Senmao Lin</td>
<td>CliniComp, Intl'</td>
</tr>
<tr>
<td>Alen Malaki</td>
<td>Cisco</td>
</tr>
<tr>
<td>Michael Mamaghani</td>
<td>Media Pouch</td>
</tr>
<tr>
<td>Paul Margolin</td>
<td>Booz Allen Hamilton</td>
</tr>
<tr>
<td>James (Brett) Marymee</td>
<td>Raytheon</td>
</tr>
<tr>
<td>David McElfresh</td>
<td>Oracle</td>
</tr>
<tr>
<td>Matthew Minnick</td>
<td>NAVAIR</td>
</tr>
<tr>
<td>Sreeparna Mukherjee</td>
<td>Cisco Systems</td>
</tr>
<tr>
<td>Daniel Nelson</td>
<td>Flowserve Corporation</td>
</tr>
<tr>
<td>Ravi Nemani</td>
<td>Mitchell International</td>
</tr>
<tr>
<td>Erez Nir</td>
<td>Mitchell International</td>
</tr>
<tr>
<td>Elio Oikawa</td>
<td>Solar Turbines</td>
</tr>
<tr>
<td>Rob Peabody</td>
<td>Cubic Mission Solutions</td>
</tr>
<tr>
<td>Luis Pineda</td>
<td>Retired Qualcomm</td>
</tr>
<tr>
<td>Gustavo Prado</td>
<td>Xenco Medical</td>
</tr>
<tr>
<td>William Proffer</td>
<td>Leidos</td>
</tr>
<tr>
<td>Josh Rivera</td>
<td>NAVAIR</td>
</tr>
<tr>
<td>Malcolm Robertson</td>
<td>Keysight Technologies</td>
</tr>
<tr>
<td>Chris Root</td>
<td>NAVAIR</td>
</tr>
<tr>
<td>Enrico Ros</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>Tim Rueth</td>
<td>UC San Diego</td>
</tr>
<tr>
<td>Maurice Sabado</td>
<td>Leidos</td>
</tr>
<tr>
<td>Iman Sadeghi</td>
<td>Pinscreen</td>
</tr>
<tr>
<td>Jeffrey Sandubrae</td>
<td>UC San Diego</td>
</tr>
<tr>
<td>Jennifer Schlenzig</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>Kevin Schmid</td>
<td>Stevanato Group</td>
</tr>
<tr>
<td>G B Singh</td>
<td>Solar Turbines</td>
</tr>
<tr>
<td>Gail Slemon</td>
<td></td>
</tr>
<tr>
<td>Garrett Smith</td>
<td>Breathe Capital</td>
</tr>
<tr>
<td>Tarun Soni</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>Name</td>
<td>Company</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Mary Sorrell</td>
<td>UC San Diego</td>
</tr>
<tr>
<td>Adriane Stebbins</td>
<td>Raytheon</td>
</tr>
<tr>
<td>Robert Stone</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>Eric Takeuchi</td>
<td>Daylight Solutions</td>
</tr>
<tr>
<td>Devang Thakkar</td>
<td>InnoTivum</td>
</tr>
<tr>
<td>Mayank Tiwari</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>Chiang Tom</td>
<td></td>
</tr>
<tr>
<td>William Townsend</td>
<td>General Atomics Aeronautical Systems</td>
</tr>
<tr>
<td>Gopi Tummala</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>Jerry Tustaniwskyj</td>
<td>Cohu Inc. (Delta Design)</td>
</tr>
<tr>
<td>Tom Valine</td>
<td>Salesforce</td>
</tr>
<tr>
<td>David Voss</td>
<td>Solar Turbines</td>
</tr>
<tr>
<td>Jiwu Wang</td>
<td>Allele Biotech/Scintillon Institute</td>
</tr>
<tr>
<td>Eliot Weitz</td>
<td>ViaSat</td>
</tr>
<tr>
<td>Jim Wilk</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>True Xiong</td>
<td>Sony PlayStation</td>
</tr>
<tr>
<td>Yohei Yamamuro</td>
<td>Simplexity Product Development</td>
</tr>
<tr>
<td>John Yamauchi</td>
<td>ChemoTactics</td>
</tr>
<tr>
<td>Michael Yao</td>
<td>Northrop Grumman</td>
</tr>
<tr>
<td>Lionel Young</td>
<td>Flowserve Corporation</td>
</tr>
</tbody>
</table>
WE’RE CONNECTING THE WORLD. ARE YOU IN?

Brilliant Minds
Profound Impact
Limitless Opportunities
Fearless Innovation
Invigorating Campuses

Career opportunities available at intern, new grad, and professional levels.
POSTER SESSION MAP

WEST BALLROOM

ENTRANCE
AGILE RESEARCH CENTERS

<table>
<thead>
<tr>
<th>Center Name</th>
<th>Poster Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for Wearable Sensors</td>
<td>1 – 9</td>
</tr>
<tr>
<td>Center for Visual Computing</td>
<td>10 – 21</td>
</tr>
<tr>
<td>CaliBaja Center for Resilient Materials and Systems</td>
<td>22 – 36</td>
</tr>
<tr>
<td>Center for Extreme Events Research</td>
<td>37 – 44</td>
</tr>
<tr>
<td>Sustainable Power and Energy Center</td>
<td>45 – 51</td>
</tr>
</tbody>
</table>

ACADEMIC DEPARTMENTS

<table>
<thead>
<tr>
<th>Department</th>
<th>Poster Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioengineering</td>
<td>52 – 71</td>
</tr>
<tr>
<td>Computer Science and Engineering</td>
<td>72 – 105</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>106 – 127</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering</td>
<td>128 – 174</td>
</tr>
<tr>
<td>NanoEngineering</td>
<td>175 – 197</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>198 – 216</td>
</tr>
</tbody>
</table>
Poster Session: Level 2 (West Ballroom)
Faculty Lightning Talks: Level 4 (the Forum)
Networking Reception: Level 2 (East Ballroom)
Parking Shuttle: 11AM – 7PM