Improved Dynamic Model of Fast-Settling Linear-in-dB Automatic Gain Control Circuit

Hsuan-Yu Marcus Pan and Lawrence E. Larson
University of California, San Diego
9500 Gilman Drive
La Jolla, CA, 92093, USA
hspan@ucsd.edu

Abstract—An improved exact dynamic model of a fast-settling linear-in-dB Automatic Gain Control (AGC) circuit is proposed. The explicit transient behavior is calculated for a first-order and second-order AGC loop.

I. Introduction

Automatic Gain Control (AGC) circuits are used in many systems, where the input amplitude varies over a wide dynamic range and the output amplitude is designed to achieve a certain specified level. An AGC circuit is usually composed of a peak detector (PD), a variable gain amplifier (VGA), and a loop filter, as shown in Fig.1 [1]. The output of the VGA is detected by the peak detector, and compared with a reference voltage V_{ref}. Since the gain of the VGA is adjusted according to the amplitude of the input, the resulting output amplitude is constant.

AGC circuits can be categorized according to different gain characteristics of the VGA. One of the most popular types is the “Linear-in-dB” VGA, whose gain control has an exponential characteristic [2]. As a result of this characteristic, an exact analysis of the large-signal settling behavior of the Linear-in-dB circuit is very difficult. Previous authors have used a Taylor series expansion to approximate the exponential function in the overall loop analysis [1, 3-4], which is only valid for small input level variations. One important use of this VGA is as a feedback control element for a wideband polar transmitter [5-6]. These circuits require a very wide dynamic range for their operation and therefore an exact analysis of the settling behavior of the Linear-in-dB VGA is needed.

In light of this, we present an exact dynamic large-signal model of a linear-in-dB AGC circuit. Our proposed model is capable of describing the entire loop large-signal behavior, and exactly predicts the overall loop settling time dependence on input amplitude variations.

The paper is organized as follows: Section II reviews the AGC circuit operation and derives the first-order exact steady-state large signal model. Section III generalizes the analysis to a second-order response. Section IV derives the settling time of the overall loop. Section V compares the calculated settling time results with behavioral simulation results. Conclusions are provided in Section VI.

II. AGC Circuit Operation and First-Order Steady-State Large Signal Modeling

A. First-order Steady-state Large-signal Model

The first-order basic AGC loop is shown in Fig.1. According to the linear-in-dB operation of the VGA, the output of the VGA can be expressed as:

$$V_{out} = V_{in} \times e^{\alpha V_{in}/V_T}$$ (1)

where α is the VGA gain when the control voltage V_{ctrl} is zero, and V_T is the constant representing the linear-in-dB slope.

As an example, suppose an envelope-modulated signal is fed to the input of the VGA, V_{in} can be written as

$$V_{in} = A (1 + m \cos \omega_c t) \cos \omega_e t$$ (2)

where m is the modulation index of the envelope-modulated signal, ω_c is the envelope angular frequency and ω_e is the carrier angular frequency [7, 8].

Based on peak extraction operation, the output of the peak detector V_{pd} can be expressed as

![Fig.1. Basic AGC circuit block diagram. The gain of VGA is adjusted according to the amplitude of V_{in} to hold V_{out} at constant-amplitude.](image-url)
\[
V_{pd} = \text{Peak}(V_{mm})
\]

where \(\text{Peak}(\cdot)\) is the peak extraction function. The output of the \(g_m\)-C filter, which acts as a loop filter, can also be described as

\[
V_{ctrl} = \frac{1}{C} \int g_m(V_{ref} - V_{pd}) dt
\]

where \(V_{ctrl}\) is integrated from the error term \(V_{ref} - V_{pd}\).

Combining (1)-(4), we have

\[
\frac{dV_{ctrl}}{dt} = \frac{g_m}{C} (V_{ref} - A (1 + m \cos(\omega t)) \times \alpha \times e^{\omega t/V_T})
\]

Equation (5) describes the transient behavior of \(V_{ctrl}\) of the first-order AGC circuit. It is a nonlinear first-order differential equation and is difficult to solve directly. However, (5) can be simplified by substituting \(u = e^{\omega t/V_T}\) and then:

\[
\frac{1}{u^2} \frac{du}{dt} \frac{g_m}{C} V_{ctrl} \frac{1}{u} = \frac{g_m}{C} A \times \alpha (1 + m \cos(\omega t))
\]

Equation (6) is known as the Bernoulli Equation [9] and can be solved as

\[
u = \left(\frac{\omega_m A \times \alpha \times m \cos(\omega t - \phi)}{V_T} \right)^{-1} \left(\frac{A \alpha e^{\omega t/V_T}}{V_{ref}} \right)
\]

where \(\phi = \tan^{-1} CV_{ctrl} \omega_m \), \(\omega_m = \frac{g_m}{C}\), and \(P\) is the integration constant.

Finally, the control voltage \(V_{ctrl}\) can be obtained by applying \(V_{ctrl} = V_T \ln u\) and solved explicitly as

\[
V_{ctrl} = -V_T \ln \left[\frac{\omega_m A \times \alpha \times m \cos(\omega t - \phi)}{V_T} \right] + A \alpha e^{\omega t/V_T} + P e^{\omega m \ln \frac{V_T}{V_{ref}}}
\]

B. First-order Steady-state Behavior

In steady state, the \(P e^{\omega m \ln \frac{V_T}{V_{ref}}}\) term in (8) can be neglected and \(V_{ctrl}\) can also be solved explicitly by combining and substituting \(V_{ctrl}\) of (8) into (1) and (3).

\[
V_{ctrl,ss} = -V_T \ln \left[\frac{\omega_m A \times \alpha \times m \cos(\omega t - \phi)}{V_T} \right] + A \alpha e^{\omega t/V_T} + P e^{\omega m \ln \frac{V_T}{V_{ref}}}
\]

If \(\omega_e\) is relatively small when compared with \(\omega_m V_{ref} / V_T\), the envelope of \(V_{ctrl,ss}\) can be approximated to \(V_{ref}\) (steady-state value), which means the overall AGC can settle within a very short time. If \(\omega_e\) is large, (9) implies that the AGC cannot keep the output amplitude constant.

II. AGC Circuit Second-order Large Signal Model

A. Peak Detector Delay Model

The analysis in the previous section was concerned only with the first-order (single-pole) approximation, where the pole is only determined by the \(g_m\)-C filter and there are no delays anywhere else in the circuit. However, as the input frequency increases, other poles in the circuit become more important [10]. Therefore, a second-order large-signal model is proposed here, which takes into account the other poles associated with the peak detector.

Consider the peak detector delay model in Fig. 2, where the input signal is \(A \cos(\omega t)\) and \(\omega_p\) is the angular frequency of the associated pole. In steady state, the output of the peak detector delay block, \(V_{dout}(t)\), can be calculated by the Inverse Laplace Transform of \(V_{dout}(s)\) as follows:

\[
V_{dout}(t) = \frac{A \omega_p}{\sqrt{\omega_p^2 + \omega_e^2}} \cos(\omega t - \phi_p) - \phi_p = \tan^{-1}(\omega_p / \omega_e)
\]

B. Second-order Steady-state Behavior

If we insert the above delay block between the output of the PD and the input to \(g_m\)-C filter to model the delay associated with the PD, as shown in Fig. 3, the input of \(g_m\)-C filter can be calculated by combining (2) and (3), and be re-written as

\[
V_{gmc} = A e^{\omega t/V_T} \left[u(t) - e^{-m \omega_p} \left(\cos(\omega t - \phi_p) \right) \right]
\]

In steady state, the \(e^{-\omega_p t}\) term can be ignored. By substituting \(V_{pd}\) with \(V_{gmc}\) and solving (1), (2), (4), and (11), the steady-state value of \(V_{ctrl}\) can be obtained as:

\[
V_{ctrl,ss} = -V_T \ln \left[\frac{\omega_m A \times \alpha \times m \cos(\omega t - \phi)}{V_T} \right] + A \alpha e^{\omega t/V_T} + P e^{\omega m \ln \frac{V_T}{V_{ref}}}
\]

Fig. 2. Peak detector delay block diagram.
where \(\phi = \tan^{-1} \left(\frac{\omega_p V_c}{\omega_m V_{ref}} \right) + \tan^{-1} \left(\frac{\omega_e}{\omega_p} \right) \). When \(\omega_p \) is much greater than \(\omega_e \), (12) reduces to (8) as expected.

In a similar manner to Section II, \(V_{out} \) and \(V_{pd} \) can also be expressed explicitly by combining and substituting \(V_{ctrl} \) of (12) into (1) and (3). Equation (12) also shows that the loop’s overall response could be severely impeded by a low \(\omega_e \) (corresponding to excessive loop delay). To validate our theory, the \(V_{pd} \) root mean square error percentage with respect to \((\omega_e/\omega_p)\), from SPICE simulation and calculation, is shown in Fig. 4. It can be seen that the error percentage increases when \((\omega_e/\omega_p)\) increases, and calculation and simulation results agree closely.

III. AGC LOOP SETTLING TIME

A. First-order AGC Circuit Settling Time Calculation

Specifications for an AGC circuit often involve certain requirements associated with the transient response, and one important figure-of-merit is the settling time [3]. A simple way of measuring this is to apply a unit step response to the system, i.e.

\[
V_{in} = A \left(1 + k \times u(t)\right) \cos \omega t
\]

Where \(u(t) \) is the unit-step function and \(k \) is the input amplitude variation factor. The first-order \(V_{ctrl} \) transient response with respect to input unit-step response is

\[
V_{ctrl,1} = V_f \ln \left(\frac{V_{ref}}{A(1 + k) \alpha} \right) - \ln \left(1 - \left(\frac{k}{1 + k} \right) e^{\frac{-\omega_e V_{ctrl}}{V_f \omega_m}} \right)
\]

and \(V_{out} \) can be solved by substituting (14) into (1)

\[
V_{out,1} = \frac{V_{ref} \cos \omega t}{1 - \left(\frac{k}{1 + k} \right) e^{\frac{-\omega_e V_{ctrl}}{V_f \omega_m}}}
\]

Then the 1% settling time \(T_s \) of the \(V_{out,1} \)’s envelope can be solved as

\[
T_s = \frac{V_f}{\omega_m V_{ref}} \ln \left[\frac{k + 100}{k + 1} \right]
\]

Not surprisingly, (16) shows that the settling time is not only a function of \(\omega_m V_{ref} / V_f \), but also a function of input amplitude variation ratio \(k \).

B. Second-order AGC Circuit Settling Time Calculation

Similarly, the second-order AGC circuit settling time can also be calculated by applying a unit step response to the circuit in Fig. 3. The second-order \(V_{ctrl} \), transient response with respect to input unit-step response can be shown as follows:

\[
V_{ctrl,2}(t) = V_f \ln \left[\frac{V_{ref}}{A(1 + k)} \right] - \ln \left(1 + \left(\frac{c \sigma e^{\lambda t}}{\omega_m V_{ref}} \right) \left(\frac{\omega_{out} V_f}{\omega_m V_{ref}} - 1 \right) e^{\frac{-\omega_e V_{ctrl}}{V_f \omega_m}} \right)
\]

where \(\omega_p \) represents the pole angular frequency of peak detector. Substituting (17) into (1) and (3), the envelope of \(V_{out} \), then becomes
\[
V_{pd,ref}(t) = \frac{V_{\text{ref}}}{1 + \frac{e^{-\omega p T}}{\omega p V_{\text{ref}}} - 1}\left(\frac{\omega p V_{\text{ref}}}{\omega V_{\text{ref}}} - 1\right)^{\frac{V_{pd,ref}}{V_{\text{ref}}}}
\]

The settling time \(T_s \) is difficult to be expressed explicitly from (18) but it can be solved iteratively. Equation (18) shows that the transient behavior is a function of \(\omega p V_{\text{ref}} / V_T \), input amplitude variation ratio \(k \). If \(\omega p \) is very low, the \(V_{pd} \) settling response is dominated by \(\omega p \) rather than \(\omega V_{\text{ref}} / V_T \).

Therefore, to achieve a fast settling AGC circuit, it is important to increase \(\omega p \) [13], \(\omega V_{gm} \), and the ratio \(V_{\text{ref}} / V_T \).

IV. AGC SIMULATIONS AND VERIFICATION OF ANALYSIS

Behavioral level simulations are provided in this section to compare the first-order/second-order settling time simulation results and theoretical results, where the second-order settling time is calculated iteratively. The response of the AGC circuit is shown in Fig. 5, where previous theories [1, 3-4] did not describe the loop characteristics dependence on input amplitude variation ratio \(k \). Note that the first-order estimation is only valid for small \((\omega p / \omega) \) ratio. The theoretical calculation results predicted by our theory are close to SPICE behavioral level simulation results.

![Graph](image)

Fig.5. Comparison of first-order and second-order AGC circuit settling time simulation and calculation results for \((\omega p / \omega) = 1/20 \) and \(1/100 \). Setting time \(T_s \) is a function of input amplitude variation ratio \(k \). Simulation parameters: \(V_p = 0.6V, \omega p = 2\text{GHz}, V_{\text{ref}} = 0.24V, \omega = 1\text{mS}, \omega p t = 2pF, \alpha = 0.1, m = 0.9 \).