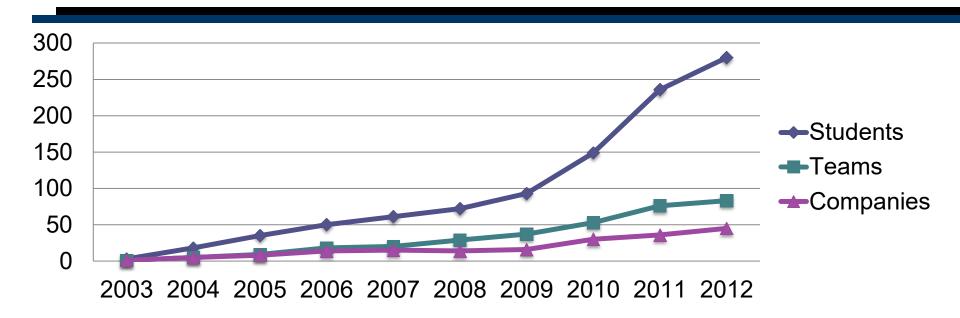


CAP Chairman 2012 - 2013

Anton Monk, Ph.D. UCSD '94 Co-founder & VP Technology Entropic Communications

Thank you Carl Lippke and Solar Turbines for 'Spirit of Solar' Cruise September 10^{th,} 2012

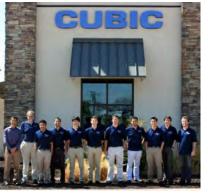
Welcome New CAP Members!


Welcome Distinguished Students

Triton Engineering Student Council Pooja Makhijani, President

Team Internship Program

Team Internship Program Summer 2012


Team Internship Program	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Students	3	18	35	50	61	72	93	149	236	280
Teams	1	5	9	18	20	29	37	53	76	88
Companies	1	5	8	14	15	14	16	30	36	45
New sponsors	1	4	5	8	4	3	6	15	21	17
Returning sponsors	3	1	3	6	11	11	10	15	15	28
International teams				1	2	8	0	5	4	3

Team Internship Program – Featured Presentation

Smart Energy Dashboards and Controls – a UC San Diego Project

Amy Chiang EnvE '12, John Lee ME MS '13, Dung Nguyen EnvE '13, Peggy Ip ME '14

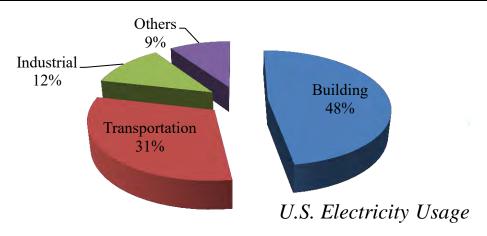
Smart Energy Dashboards and Controls

BUILDING ENERGY MANAGEMENT

presented by

Amy Chiang, Environmental Engineer '12
Peggy Ip, Mechanical Engineer '14
John Chung Sang Lee, Mechanical Engineer '13
Dung (Yung) Nguyen, Environmental Engineer '13

Dr. Chuck Wells, Supervisor



PROBLEMS

- 40%+ of the U.S's building electricity usage comes from HVAC and lighting
- Imported energy is the #2 UCSD money expenditure
- It is difficult to extract information from building measurements without **organized data management**
- Building occupants are **unaware** of their energy usage
- There are no automated building controls infrastructure that includes optimization of key performance analysis to increase efficiency

HYPOTHESIS

Smart Meter Project by CPUC forecasted reduced energy consumption by 15%. Therefore, if accurate real-time data analysis of building energy performance, utilizing PI system software, is available to local community, it would increase awareness to reduce waste.

APPROACH

STEP 1: Organize & Research

- PI Training
- KPI Literature Review

1. Data

Manageme

Documentation

& Visualization

2. Data

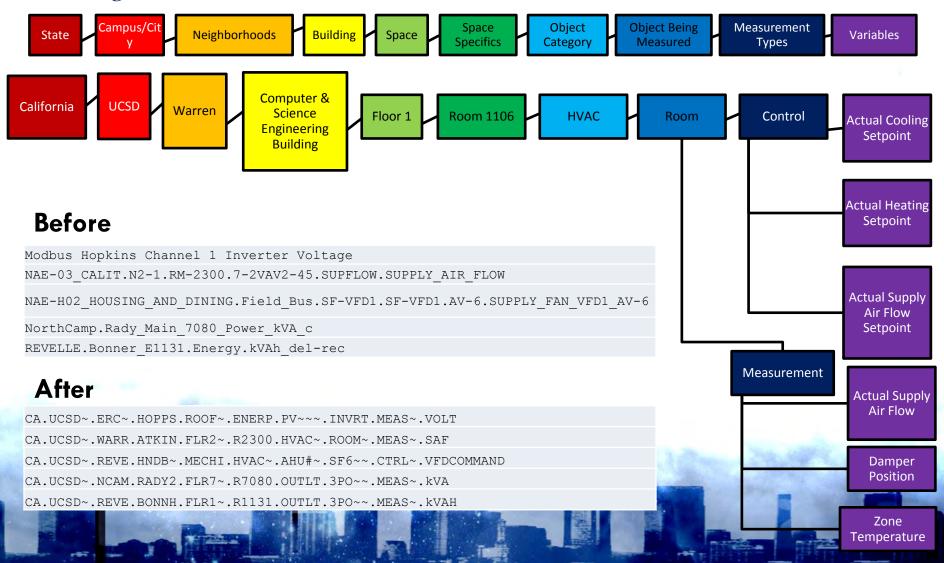
Analysis

• Analyze PI system database (85,000 datasets!)

STEP 3: Documentation & Visualization

- Completed a paper of project findings
- Filed patent for 'Agent Control Theory'

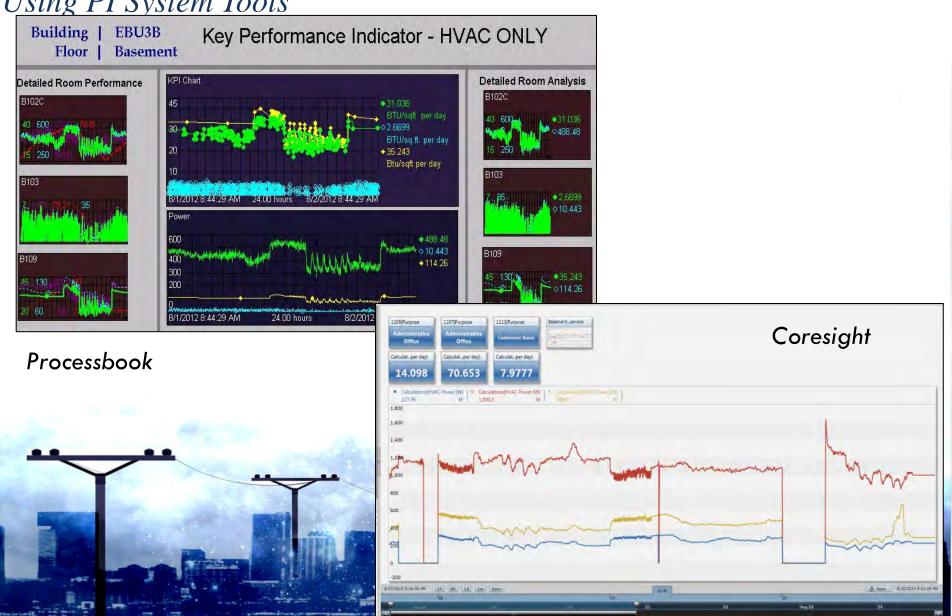
STEP 2: Integrate & Analyze


- Create a standard naming structure for building measurements
- Created a model 'Asset Framework' for EBU3B/CSE Building
- Determined energy consumption of HVAC versus other electrical loads
- Organized the data to be available on different means of data dashboards or visualizations
- Created web display for building KPIs

RESULTS Data Management

Team Internship Program

Naming Structure

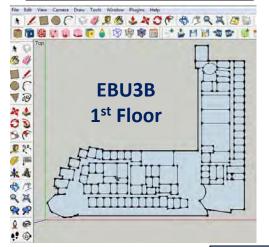


RESULTS Data Management

Team Internship Program

Using PI System Tools

RESULTS Data Analysis



Team Internship Program

On KPI_{ea} (energy KPI: energy/area) using two methods

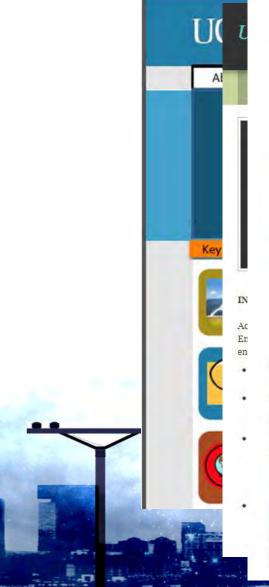
ACTUAL: Calculation

Power $Q = \rho v A D_p C (T_1 - T_0)$

Supply Air Flow

Damper Position

Zone Temperature


Discharge Temperature

Google Ske	etchup	+
EnergyPlus	(from	DOE)

KPI COMPARISION									
		1106 Administrative	1107 Administrative	1113 Conference					
	Ideal	9.01 $\frac{kWh}{ft^2}$	14.55 $\frac{kWh}{ft^2}$	14.09 $\frac{kWh}{ft^2}$					
•	Actual	10.95 $\frac{kWh}{ft^2}$	77.74 $\frac{kWh}{ft^2}$	9.20 $\frac{kWh}{ft^2}$					
	% Deviation	21.34%	432.30%	-34.72%					

RESULTS | Sharing Data

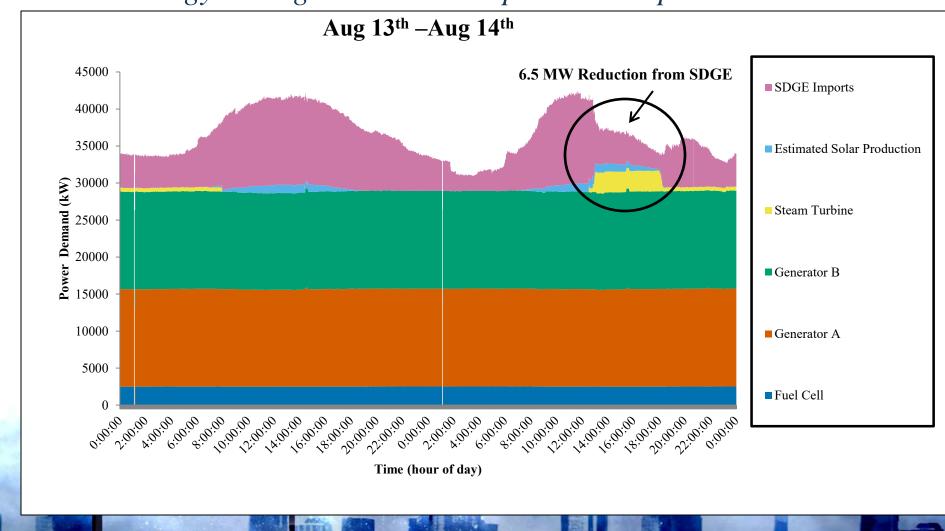
NAVIGATOR

"click on EBU3B to view KPI value and ranking"

EBU3B

Installed Plugin Version: 6.2.2.6613

Final Product



RESULTS Potential Outcomes

Potential Energy Savings: Demand Response Example

RESULTS

Building Control

Team Internship Program

Object oriented agent based hierarchical control systems for buildings (patent pending)

It's a hot summer day but not too hot. Alright, I can adjust the thermostat from 68°F to 72°F in order to reduce 5% power demand. I can lower energy KPI while keeping comfort KPI constant. We are good.

Oh no! We need to cut 30% of power demand! Building 1 of 2, cut 15%!

Floor 1

Building 1

Hmm, Microgrid tells me to cut 15%.

Hey floor 1, according to my calculations, you can cut 10% of your power demand!

Hey room, you have "room" to cut 5% power

demand. Do it!

FUTURE GOALS

- Build the AF naming structure for entire campus
- Implement hierarchical control system
- Use local microgrid frequency as building control signal
- Auto Discovery: Legacy tag-names can be automatically renamed to new PI tags that match the AF names
- Implement room agent Notifications and SQC
- Frequency decrease → load reduction

THANK YOU!

ACKNOWLEDGEMENTS

- Chuck Wells
- Byron Washom
- Yuvraj Agarwal
- Bob Cadwell
- Jo Frabetti
- Dave Roberts
- Tanja Zseby
- OSIsoft Support Team
- UCSD TIP Program

Distinguished Faculty Presentation

Professor Yoav Freund Computer Science & Engineering

Big Data Analytics: What it is and why you should care

- Expertise: machine learning, computational statistics and their applications in biology, image processing and signal processing.
- Best known for his joint work with Dr. Robert Schapire on the Adaboost algorithm.
- In 2008 Dr. Freund was elected as a <u>Association for the Advancement of Artificial Intelligence</u> (AAAI) Fellow.
- Faculty Co-Director, along with Prof Yannis Papakanstantinou, for new MAS Program in Data Science and Analytics

Big Data What is it and why should I care?

Yoav Freund
Computer Science and Engineering
UCSD

Big Data (For Business) What is it and why should I care?

Yoav Freund
Computer Science and Engineering
UCSD

Fare collection systems in 40 public transportation markets around the world.

Fare collection systems in 40 public transportation markets around the world.

Side effect: systems store detailed data about movement of people.

- Fare collection systems in 40 public transportation markets around the world.
- Side effect: systems store detailed data about movement of people.
- The collected data is potentially valuable, how to monetize this value.

Hospitals and clinics are required to switch to electronic records.

Hospitals and clinics are required to switch to electronic records.

EMR companies provide services to meet requirement.

Hospitals and clinics are required to switch to electronic records.

EMR companies provide services to meet requirement.

Collect variety of data:

Hospitals and clinics are required to switch to electronic records.

EMR companies provide services to meet requirement.

Collect variety of data:

Doctor Notes.

- Hospitals and clinics are required to switch to electronic records.
- EMR companies provide services to meet requirement.
- Collect variety of data:
- Doctor Notes.
- bedside signals (heart rate, EKG ...)

- Hospitals and clinics are required to switch to electronic records.
- EMR companies provide services to meet requirement.
- Collect variety of data:
- Doctor Notes.
- bedside signals (heart rate, EKG ...)
- Images (X-ray, CT, MRI, Pathology, ...)

- Hospitals and clinics are required to switch to electronic records.
- EMR companies provide services to meet requirement.
- Collect variety of data:
- Doctor Notes.
- bedside signals (heart rate, EKG ...)
- Images (X-ray, CT, MRI, Pathology, ...)
 - Great potential for medical studies

- Hospitals and clinics are required to switch to electronic records.
- EMR companies provide services to meet requirement.
- Collect variety of data:
- Doctor Notes.
- bedside signals (heart rate, EKG ...)
- Images (X-ray, CT, MRI, Pathology, ...)
 - Great potential for medical studies
 - Great potential for abuse by health insurance companies.

Other examples

Car insurance.

eCommerce

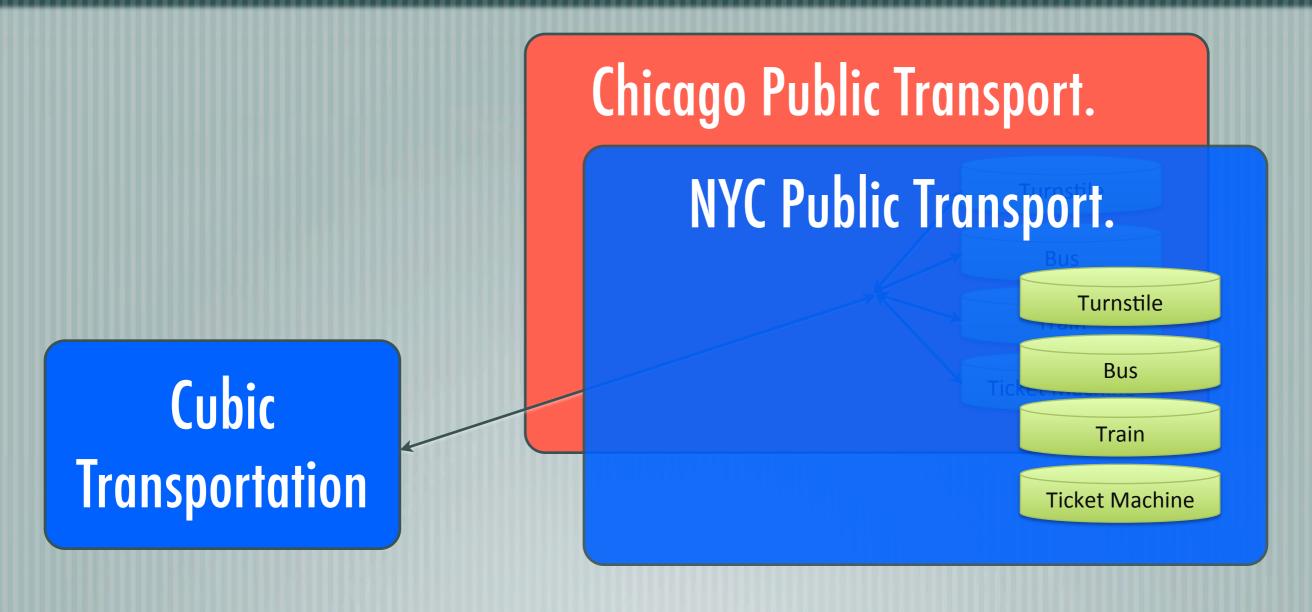
Web advertisement.

••••

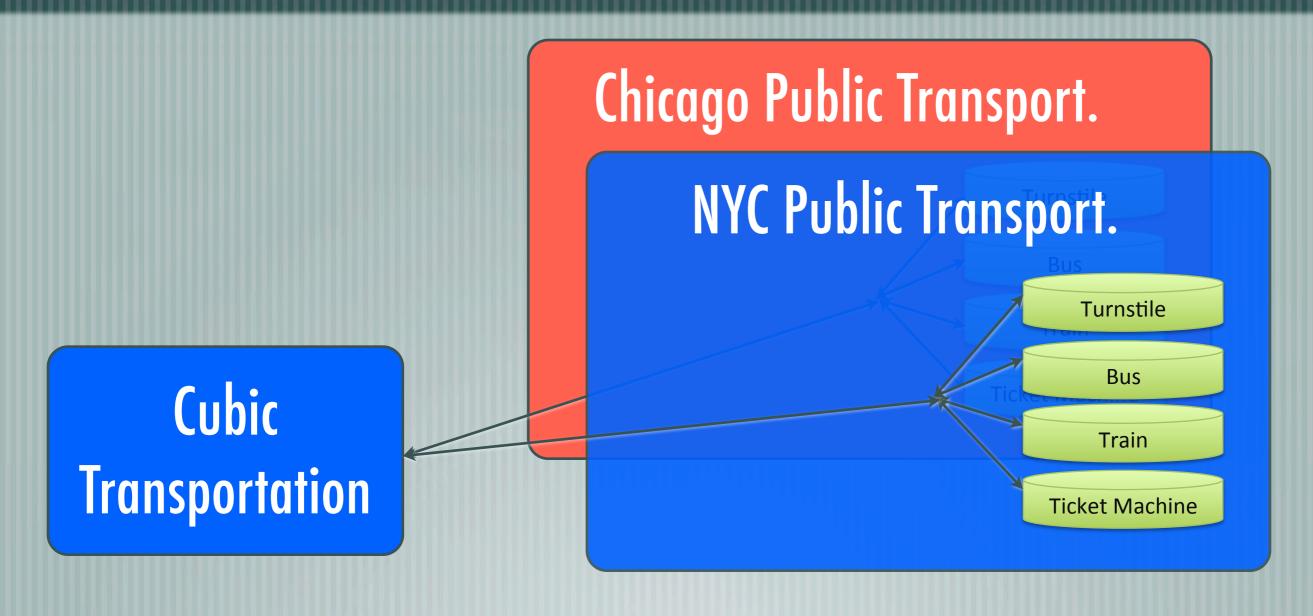
Cubic Transportation

Cubic Transportation

Chicago Public Transport.

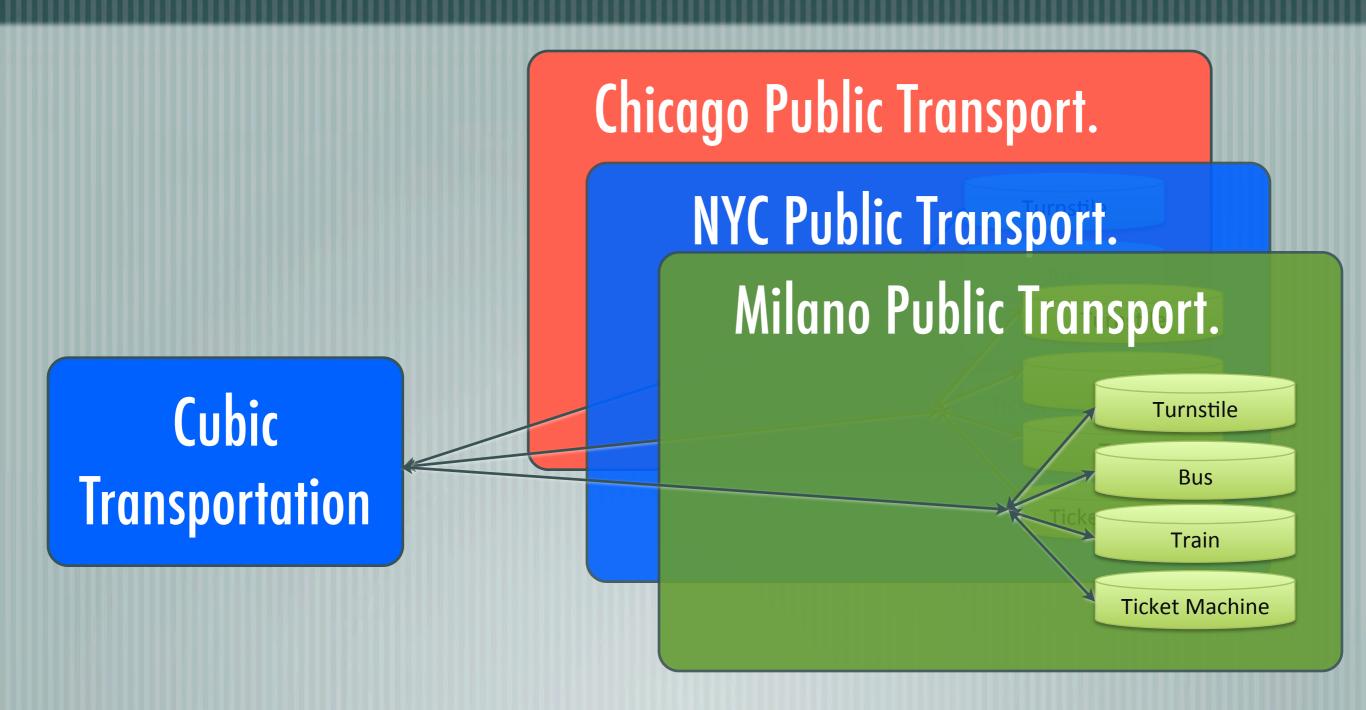

Turnstile

Bus


Train

Ticket Machine

Cubic Transportation



Chicago Public Transport. NYC Public Transport. Milano Public Transport. Cubic Turnstile Bus **Transportation** Train **Ticket Machine**

The transportation organization owns the data, but has no means of analyzing it.

The transportation organization owns the data, but has no means of analyzing it.

Cubic has access to all of the data, and can analyze it, but does not own it.

The transportation organization owns the data, but has no means of analyzing it.

Cubic has access to all of the data, and can analyze it, but does not own it.

The commuter has a right for privacy.

Price-tag for complete dataset prohibitively high.

Price-tag for complete dataset prohibitively high.

Transmission of large datasets is very expensive.

Price-tag for complete dataset prohibitively high.

Transmission of large datasets is very expensive.

API's allow doling out of information one record at a time.

Example: Google Maps API

Service	Usage limit (per day)	1,000 excess map loads (in U.S. dollars)
JS Maps API v2	25,000	\$1.00
JS Maps API v3	25,000	\$0.50
Static Maps API	25,000	\$0.50
Street View Image API	25,000	\$0.50

Allowing access to data compromises privacy.

Allowing access to data compromises privacy.

Queries that present a smaller threat:

- Allowing access to data compromises privacy.
 - Queries that present a smaller threat:
 - What is the median time to travel from A to B?

- Allowing access to data compromises privacy.
 - Queries that present a smaller threat:
 - What is the median time to travel from A to B?
- What blood pressure alarm minimizes the number of false alarms? (while keeping misses below 1/10,000)

Privacy leakage

Privacy Firewall

Privacy leakage

Privacy Firewall

What is the average personal wealth?

Privacy leakage

Privacy Firewall

What is the average personal wealth?

Suppose we really wanted to know if Bill Gates is in the database.

Suppose we really wanted to know if Bill Gates is in the database.

Bill gates personal wealth is so high that he can move the average significantly.

- Suppose we really wanted to know if Bill Gates is in the database.
- Bill gates personal wealth is so high that he can move the average significantly.
- Similar situation: patients with very high medical expenses.

- Suppose we really wanted to know if Bill Gates is in the database.
- Bill gates personal wealth is so high that he can move the average significantly.
- Similar situation: patients with very high medical expenses.
- Turns out that asking for the median does not leak personal information.

- Suppose we really wanted to know if Bill Gates is in the database.
- Bill gates personal wealth is so high that he can move the average significantly.
- Similar situation: patients with very high medical expenses.
- Turns out that asking for the median does not leak personal information.
- How can we prove that a given API preserves privacy?

Privacy Firewall

What is the median personal wealth?

Privacy Firewall

What is the median personal wealth?

Privacy Firewall

What is the median personal wealth?

Privacy Firewall

What is the median personal wealth?

Privacy Firewall

What is the median personal wealth?

Privacy Firewall

What is the median personal wealth?

Differential Privacy

Privacy Firewall

What is the median personal wealth?

\$30,000 - \$31,000 \$31,000 - \$32,000

Big data - Highly distributed data with complex ownerships.

Big data - Highly distributed data with complex ownerships.

API = A way of doling out small pieces of information.

Big data - Highly distributed data with complex ownerships.

API = A way of doling out small pieces of information.

Differential Privacy: a formalism for proving that private information is not leaking through the API.

Big data - Highly distributed data with complex ownerships.

API = A way of doling out small pieces of information.

Differential Privacy: a formalism for proving that private information is not leaking through the API.

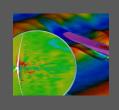
Masters of Advanced Studies in Big data analytics.

Dean's Report

Dean Frieder Seible Jacobs School of Engineering

Multidisciplinary Master of Advanced Study Program

MAS Architecture-Based Enterprise System Leadership Program
Bridge the gap between engineers and managers; gain a better understanding of management essentials coupled with a broad view of engineering disciplines.


MAS Medical Device Engineering (BioEng + MAE)

Broad education in biology, mechanical design, and materials focused on medical device engineering.

MAS Wireless Embedded Systems (ECE + CSE)

Deep and broad education in the multidisciplinary fundamentals of wireless communications and embedded system design.

MAS Simulation-Based Engineering (SE+ MAE)

Solve multi-physics engineering problems using the techniques of modern computational analysis.

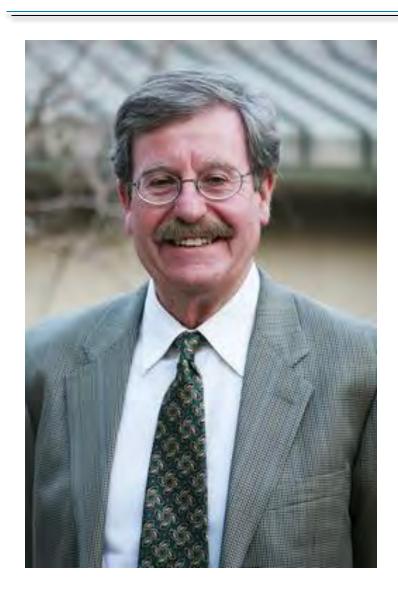
MAS Structural Health Monitoring (SE + ECE)

Apply interdisciplinary toolsets for intelligent structural/ system monitoring and life-cycle management.

Master of Advanced Study Degree

		Fall 2011 Enrolled	Fall 2012 Enrolled
	Architecture-Based Enterprise Systems Engineering	30 new / 27 returning	30
	Wireless Embedded Systems	20	31
	Medical Devices Engineering	6	14
Air Speed (m/s) 15 8.5	Simulation-Based Engineering		27 submitted*
	Structural Health Monitoring		16 <i>submitted*</i>

Chancellor, Pradeep K. Khosla



Sabbatical - Bauhaus

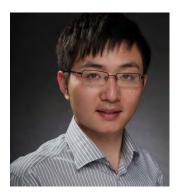
Acting Dean

Juan Lasheras

Distinguished Professor Mechanical and Aerospace Engineering Bioengineering

Penner Chair in Engineering and Applied Science

National Academy of Engineering


Director,
Center for Medical Device and Instrumentation,

Faculty Director,
MAS Medical Device Engineering

Faculty Hires

Chiara Bisagni, SE Composite Aerospace Structures

Shengqiang Cai, MAE Energy/Mechanics & Materials

Shadi Dayeh, ECE Solid State Devices & Nanotechnology

Olivia Graeve, MAE Nanopowder for Fuel Cells

Drew Hall, ECE Biomedical Electronics

Pradeep Khosla Chancellor ECE/CSE

Darren Lipomi, NE Renewable Energy Solutions

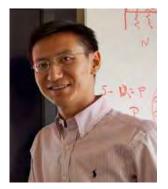
Shachar Lovett, CSE Computational Complexity

Jason Mars, CSE Warehouse Scale Computer Optimization

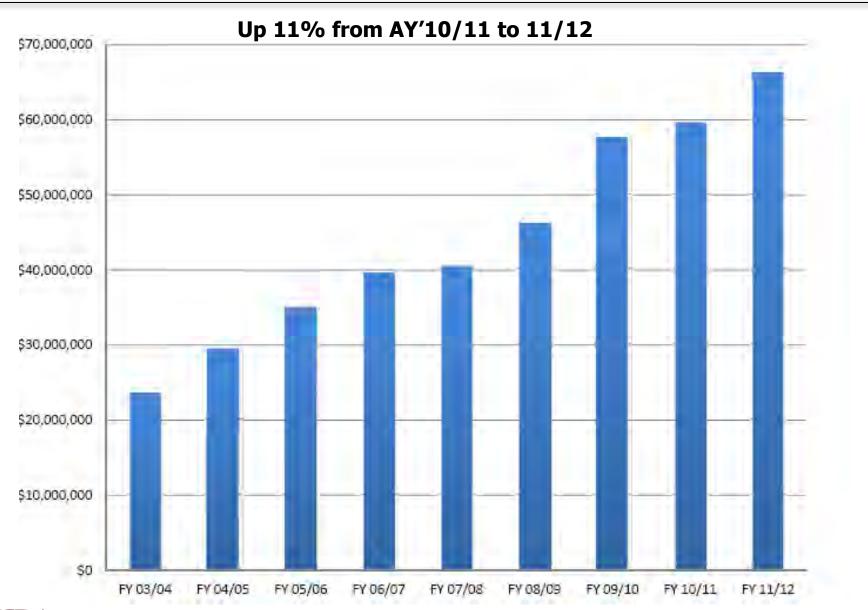
Patrick Mercier, ECE Ultra Low Powered Integrated Circuits

Faculty Hires, continued

Mark Mercola, BENG Regenerative Therapies for Heart Tissue


Jian Luo, NE Nanomaterials for Energy Efficiency

Justin Opatkiewicz, NE Nanotube Devices



Peter Wang, BENG Live Cell Imaging and BioNanotechnology

Sheng Zhong, BENG Bioinformatics

Industry & Private Research Expenditures

UC San Diego #1

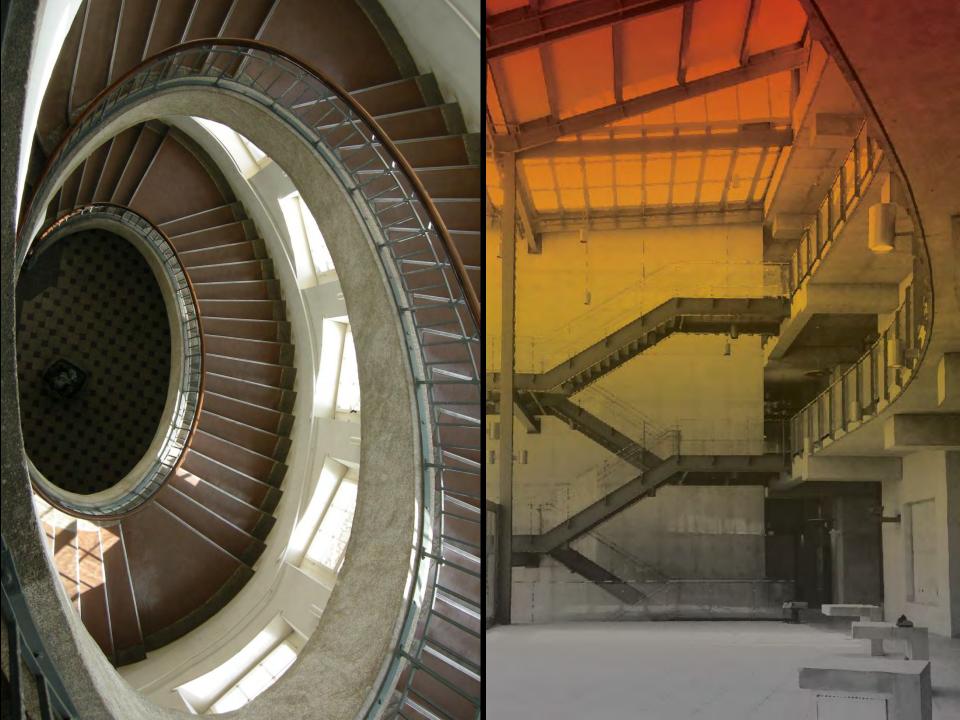
Strength in:

- Social Mobility
- Research
- Service

	sort a-z	
ort	Institution sort by s	state
		Overall Score
1	University of California-San Diego (CA)*	100
2	Texas A&M University (TX)*	91
3	Stanford University (CA)	90
4	Univ. of North Carolina-Chapel Hill (NC)*	89
5	University of California-Berkeley (CA)*	87
6	University of California-Los Angeles (CA)*	85
7	Case Western Reserve University (OH)	84
8	University of Washington-Seattle (WA)*	84
9	University of California-Riverside (CA)*	82
10	Georgia Institute of Technology-Main (GA)*	81

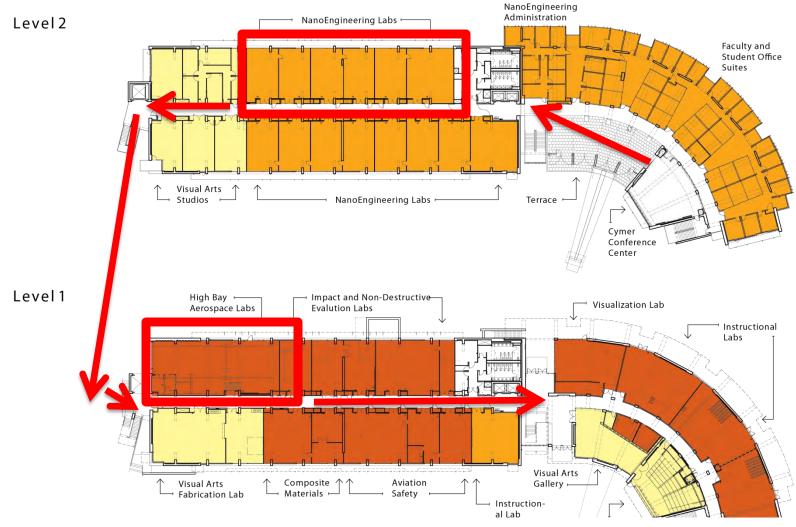
UC San Diego #1 'Call it a three-peat'

sort	sort a-z Institution sort by state
	Overall Score
1	University of California —San Diego (CA)*



sort	sort a-z Institution sort by state	
	_	overall Score
1	Univ. of California, San Diego*	100

Structural and Materials Building – Long-term Vision



STRUCTURAL AND MATERIALS ENGINEERING BUILDING

Tour NanoEngineering and High Bay Aerospace Labs

CAP Business:

Dates to Remember:

Nov 1, 2012

,	
Feb 7, 2013	CAP Executive Board Meeting
Feb 21, 2013	Disciplines of Engineering Career Fair (DECaF)

Professional Evening with Industry-NSBE, SWE, & SHPE

Apr 18, 2013 Research Expo

Jun 6, 2013 CAP Executive Board Meeting

