UC San Diego Jacobs School of Engineering

Welcome CAP Executive Board June 11th, 2015

CAP Executive Leadership 2014 - 2015

CAP Chairman: *Jeff Carter* _{CS Alumnus} '86 *Vice President and General Manager of Teradata Platforms*

CAP Vice Chairman: Mark Ambrose San Diego Site Executive, Raytheon

Welcome New CAP Members!

Welcome Distinguished Students

Triton Engineering Student Council (TESC)

Institute of Electrical and Electronics Engineers (IEEE)

Jacobs School of Engineering

Amy Chung **TESC VP External** Chemical Engineering '16

UC San Diego Jacobs School of Engineering

Upcoming Events for Fall

SD Hacks, October 2-4

Engineers on the Green, September 28

Dinner with the Deans, October 23

Networking for faculty and students

Goals

- Increased corporate interaction
- Expanding student communication with industry beyond DECaF

Potential events

- Networking with Industry
- Company Tours
- Workshops
- Graduate Panels

SD Hacks

October 2-4, 2015

Where community and collaboration meets innovation

- 1000+ attendees from across the nation
 - Programmers, entrepreneurs, innovators
- 36 hours of student interaction
- Aiming to become the premiere hackathon in the west coast

Save the Date

- June 15th
 - Website Launch: <u>http://sdhacks.io/</u>
 - Participation registration opens

Contact Us Ryan Hill, Director rjhill@ucsd.edu

Website: <u>http://sdhacks.io/</u>

Sponsorship Inquiries: <u>sponsor@sdhacks.io</u>

Sponsor Tiers

	Bronze	Silver	Gold	Platinum
	\$3,000	\$10,000	\$15,000	\$30,000
General				
Tickets	2	5	10	Unlimited
Space	None	Table	+ Canopy	Lounge
Facetime	Mixer	During	During	+ Ceremonies
Branding				
Logo on T-Shirt		•	•	•
Swag	•	•	•	٠
Logo on Website	•	•	•	٠
Mentions + Shoutouts			Some	More
In-Event Ad Space			Small	Large
Recruiting				
Resume / Portfolio		Post-Event	Pre-Event	Pre-Event
Interview Rooms				Some Access
Distribution Materials	•	•	•	٠
Outreach				
Side Events		15 Mins	30 Mins	1+ Hrs
API Directory	•	•	•	•
Hardware Lab	•	•	•	۰
Extended Workshops	1		٠	۲

Company logo will appear during launch if sponsorship initiated before 6/15

Opportunities

- o Recruitment
- Feedback/product adaptation
- o Brand recognition and exposure

Sponsorship Inquiries:

sponsor@sdhacks.io

February 16-19, 2016

DECaF 2015 Recap

- 93 companies
- 12 corporate sponsors
- Nearly 2000 student attendees (record attendance)
- Reached capacity for Price Center Ballrooms
- Increased company diversity
- T.O.P. Program implemented

Goals for DECaF 2016

- Start promotion August
- Venue expansion
- Expansion to 100 companies
- Continued increase in company diversity

Contact Us!

- Vivek Koppuru, External Career Fairs Lead <u>lkoppuru@ucsd.edu</u>
- Dhruhin Kurli, Internal Career Fairs Lead
 <u>dkurli@ucsd.edu</u>
- Amy Chung <u>amchung@eng.ucsd.edu</u>

IEEE UCSD Student Branch

Ryan Collins, President - UCSD IEEE rjcollin@ucsd.edu

Who Are we?

UC San Diego Jacobs School of Engineering

500+ student members

EE, CE, CS, and various other majors at UCSD

2nd largest IEEE student branch in the country

What is Our Purpose?

Develop students into successful engineers by offering the following

- 1. Team projects
- 2. Technical workshops
- 3. Community-building events
- 4. Professional development
- 5. Technical information sessions

We Explore Projects and Compete

- Micromouse 8 teams of 5 students
- GrandprIEEE 8 teams of 5 students
- Robomagellan 8 students
- Quadcopter 8 students

Totals from 2014/2015:

- Available spots 96
- Applicants 300+

UC San Diego Jacobs School of Engineering

Goals for 2015-2016 Goals

- Improve Micromouse and Grand PrIEEE competition
- Increase workshop quality
- Improve outreach to middle and high school for STEM awareness
- Prepare members for job and internship experiences

Dean's Report

Dean Albert P. Pisano Jacobs School of Engineering

The Engineering School of The Future

FocusLook, Think and Act as a Top 10Professional Engineering School

ValuesEngineering for the Global GoodExponential Impact through EntrepreneurismCollaboration to Enrich Relevance

Jacobs School Strategies

- Maintain Quality and Serve Student/Industry Demand
- Build Strength around Strategic Themes with Cross-Campus and Industry Partners
- Enhance our Innovation Engine

Balanced Growth

Ensure Quality and Meet Demand

	2014	2020	Top 10* Average
Faculty	208	280	344
Undergraduates	6,850	5,800	5,044
Ugrad/Faculty	33:1	21:1	15:1
Masters	700	1,450	1,217
Ph.D.	1,050	1,300	1,510
Graduate/Faculty	8:1	10:1	8:1

*MIT, Stanford, UC Berkeley, Caltech, CMU, Ulllinois, Purdue, Michigan, Texas-Austin

Fall 2015 Freshman Class at a Glance

19,000 Applications – 4,416 Admitted – 900 Acceptances

Among 900 Registered Students:

Average GPA: 4.19 Average SAT: 2042 (4.4 scale) (2400 possible)

Female: URM 28% 14%

Fall 2015 Transfer Class at a Glance

3,306 Applications – 718 Admitted – 325 Acceptances

Among 325 Registered Students:

Average GPA: 3.68 (4.0 scale)

 Female:
 23%

 URM
 15%

Fall 2015 Masters Class at a Glance

5,726 Applications – 1663 Admitted – 724 Acceptances

Among 724 Registered Students:

Average GRE: 320 composite

Quantitative:166Verbal:154

Growing Demand for Empowered Masters-level Talent

Industry demand, regional economic need

Jacobs School of Engineering

Student-Centered Education

- Student Success Initiative Programs to improve retention and enhance academic success, particularly amongst women and URM.
- 140 Engineering/40 General Education
 180 unit degree goal to enable students to graduate in four years.
- Experience Engineering (E4)
 Design-Make-Break courses, throughout all four years to improve retention and enhance career preparedness.
- Team Internship Program
 Engineering projects onsite with corporate partners to enhance career preparedness.

Student Success Initiative

Increase Diversity and Retain Students in the Major

E4 Freshman Pilots in Progress

Electrophysiology for Brain-Machine-Body Interface

✓ Mechanical Engineering:
 Spring 2015

Electric motor propeller plane

Computer Science: Fall 2015

Assemble and Program Simple Robot

Electrical Engineering: Fall 2015

Manipulating Sound

✓ NanoEngineering
 In Progress

Nanoparticle Color Displays

 ✓ Structural Engineering In Progress

Structural Performance Projects

E4 Project - Computer Science & Engineering

Key concepts as an introduction to CSE Major:

- Simple programming
- Simple debugging
- Simple design

- Assembling simple computing devices
- Links between software and the real world

Steve Swanson, Prof. CSE Department Rajesh Gupta, Chairman & Prof. CSE Department

<u>Hypothesis</u>: Using a simple programming language, I can make the robot move, flash lights, respond to input, etc

Exercise: Program a pre-built robot to perform simple tasks

<u>Analysis</u>: Understanding the relationship between code and action, see what's possible for the robot

Tools: Lab space, pre-built robots

2. Design and Build a Robot

Hypothesis: I can design and build a robot

Exercise: Set goals for the robot. Design it (including decorative elements) using simple web-based tools. Assemble it. Test it

<u>Analysis</u>: Identify robot features necessary to achieve the robot's goal

<u>Tools</u>: Soldering facilities, circuit mill, 3D printers, Laser cutters

<u>Hypothesis</u>: The robot I designed can achieve the goals I set for it

Exercise: Program the robot to achieve its goals

<u>Analysis</u>: Debugging, refinement of goals, understanding shortcomings and mistakes

Tools: Lab space

E4 Project – Electrical & Computer Engineering

Key concepts that students will learn as an introduction to their major:

- Circuit theory, assembly, and testing
- Embedded systems programming and debugging
- Transducer mechanisms and interfacing transducers
- Signals and systems theory
- Digital signal processing
- Modular design techniques

Drew Hall, Prof. ECE Department Truong Nguyen, Chairman & Prof. ECE Department

1. Manipulating Sound

<u>Hypothesis</u>: With basics of circuit theory, I can create sound waves and learn common electrical test equipment

<u>Exercise</u>: Build an audio amplifier with various filters to attenuate/amplify different frequency bands

<u>Analysis</u>: Characterize the transfer function of their circuit and also how they perceive the various filters

Equipment: Breadboard, passive components, microphone, speaker, and OpAmps. Test equipment - power supplies, oscilloscopes, function generators, and signal analyzers

Source: Dolphin-Media.

Source: Sergiu Bacioiu

2. Interfacing the Physical World

Hypothesis: I will learn to interface electronics through embedded systems programming, debugging, and the theory behind various transduction

<u>Exercise</u>: Build circuit interface sensor modules including: GPS, accelerometer, gyroscope, humidity, pressure, and audio

<u>Analysis</u>: Analyze the measured signals using digital signal processing techniques

Equipment: Arduino microcontrollers and sensor shields will be used for rapid prototyping

Source: Instructables.com

Source: Instructables.com

3. Communication Links

<u>Hypothesis</u>: I can transmit, receive and interpret information through embedded systems programming, debugging, and communication theory

Exercise: Build circuits to transmit and receive data over an optical link

<u>Analysis</u>: Analyze the transmitted and received signals including different modulation/demodulation techniques

Equipment: Arduino microcontrollers, IR LED, IR photodiode, power supplies, and oscilloscopes

Source: Krazatchu

Institutes - Collaboration to Enrich Relevance

Contextual Robotic Technologies

Partner: Cognitive Science Department (Social Sciences)

7 New Faculty in Engineering and Cognitive Science \$50 Million+ Research Program Already Underway

Goal: Develop Systems that "SEE", "THINK" and "DO"

Environmental Monitoring/ Disaster Response

Manufacturing, Transportation, Logistics

Education

Assisted Living

Contextual Robotic Research

Demonstrate Relevance Robotics Innovation

Northrop Grumman

Launch Robotics Institute through seed research gift in the field.

Four Projects Awarded:

- Swarm Coordination in Disaster Response Operations
 Professor Jorge Cortes and Professor Sonia Martinez
- Real Time Object Detection with Deep Learning Models
 Professor Nuno Vasconcelos
- Information Bottlenecks in Contextual Robotics
 Post-doc Balakrishnan Narayanaswamy
- Image-To-Image Paradigm, A Roadmap to Rapid Contextual Science and Language Understanding Professor Zhuowen Tu

Global Production & Innovation

Partner: School of Global Policy and Strategy

Study the interaction between production/innovation driven by new technologies; and consequences for the world economy.

Provide effective foresight to policy makers and industry partners.

Cali-Baja Partnership Opportunities

Strengthen Design-Manufacturing Ecosystem: Proximity Matters

Skyworks Pilot

- Summer 2015 Internship Program: 15 students
- Faculty Speaker Series (Jan-June: Skyworks and CETYS)
- Discussions underway about master's-level education partnerships

Questions/Discussion

Inaugural "Agile" Research Centers

Center for Wearable Sensors Joseph Wang, Patrick Mercier

Center for Visual Computing Ravi Ramamoorthi

Center for Extreme Events Research J.S. Chen

Sustainable Power and Energy Center Shirley Meng

- Cell Factories for Pharmaceutical Production
- Drones and UAVs

Faculty Presentation

Darren Lipomi Professor of Nanoengineering

Molecular Stretchable Electronics: Towards the Next Generation Robust & Wearable Devices in Energy & Healthcare

Molecularly Stretchable Electronics

for Next-Generation Robust & Wearable Devices in Energy & Healthcare

Darren J. Lipomi

dlipomi@ucsd.edu group.darrenlipomi.com

Center for Wearable Sensors Jacobs School of Engineering CAP Executive Board Meeting June 11th, 2015

Research History

NHCO₂R²

Boston University (2001 – 2005); Prof. James S. Panek **Beckman Scholars Fellowship**

Medicinal chemistry O

Sensor in

External antenna

- Stretchable solar cells
- **Transparent sensors**

40

S)

он о

Me Me

60

2014, 6, 788

intracranial

H₂N

More energy in the form of sunlight strikes the earth in an hour than is consumed by human activity in a year.

Land Area

- Is the requirement for land area a deal-breaker for solar?
 - Solar panels: **10-20 W/m²**
 - Wind: **1-2 W/m²**
 - Hydroelectric (Lake Mead): **3 W/m²**
 - Biomass (3% efficient algae): 3 W/m²
 - Corn ethanol: 0.1 W/m²
 - Hydrothermal flux: **0.057 W/m²**

Saul Griffith, X-prize lecture: http://www.youtube.com/watch?v=jhT94Bbl70M

Solar Paint?

Lewis, N.S. http://nsl.caltech.edu/

"the solar energy conversion system can cost [no more than] 10 times more than the cost of paint."

Lewis and Nocera, PNAS 2006

Plastic Solar Cells

 Plastic solar cells are >10% efficient (lab scale), have high power to mass ratio (10 W/g), and energy payback of 1 day

Krebs et al. Adv. Mater. 2014, 26, 29

"...mechanical failure mechanisms were dominant during the field test."

Krebs et al. Energy Environ. Sci. 2010 3, 512

I've learned at times it's best to bend, 'cause if you don't, well those are the breaks.

—Jim Croce "The Hard Way Every Time"

Croce's Restaurant, Gaslamp Quarter (Now Banker's Hill)

Goals

- **1.** Improve mechanical stability
- 2. Enable molecularly stretchable electronics
 - a. integration with moving parts
 - **b.** bonding to 3D surfaces

Kim et al. Nature Mater. 2010, 9, 511

Shepherd et al. PNAS 2011, 50, 1890

Elasticity of Electronic Plastics

Effect of molecular structure on stiffness of materials

Savagatrup, Makaram, Burke, Lipomi Adv. Funct. Mater. 2014, 24, 1169

Stretching & Bonding to 3D Surfaces

O'Connor, Zaretski, Shiravi, Savagatrup, Printz, Diaz, Lipomi Energy Environ. Sci. 2014, 7, 370

The Best of Both Worlds

Is it possible to maximize efficiency and minimize stiffness?

Answer: yes!

Savagatrup, Printz, Rodriquez, Lipomi *Macromolecules* **2014**, *47*, 1981 Savagatrup, Printz, Wu, Rajan, Sawyer, Bettinger, Lipomi *Synth. Met.* **2015** (accepted)

Prediction of Molecular Stretchability

with Prof. Gaurav Arya

Root, Arya, Lipomi (in preparation)

Automated Mechanical Tests

with Prof. Frederik Krebs, DTU

Zaretski, Roth, Krebs, Lipomi

Epidermal Solar Cells

O'Connor, Zaretski, Savagatrup, Printz, Wilkes, Diaz, Rodriquez, Lipomi et al. (in revision)

Graphene as Transparent Barrier Film?

Source: Wikipedia. Author: AlexanderAIUS

Low-Cost Manufacturing of Graphene

Strongest, most conductive material known to science

Zaretski, Moetazedi, Kong, Sawyer, Savagatrup, Valle, O'Connor, Printz, Lipomi Nanotechnology 2014, 26, 045301

Future Bio-Inspired Electronic Materials

- Characteristics of human tissue
 - 1. Extreme elasticity
 - 2. Biodegradability
 - 3. Capacity for self-repair

Self-repair

(Bio)chemical sensing

i)

ii)

Biodegradable elastomeric segment

π-Conjugated semiconducting segment

Impact

- Market forecasts (by 2020)
 - Transparent electrodes: \$5B
 - Wearable electronics: **\$12B**
 - Flexible packaging: **\$250B**
 - Solar photovoltaics: \$345B
- Social benefits
 - Fracture-proof, ultra-thin modules for solar energy for offgrid, disaster relief, military, intelligence, & developing world applications
 - Stretchable, wearable, implantable, biodegradable devices for preventive medicine & postoperative care

http://electroiq.com/blog/2013/05/transparent-electrode-market-to-grow-to-5-1-billion-by-2020/ http://www.marketsandmarkets.com/PressReleases/wearable-electronics.asp http://www.smitherspira.com/products/market-reports/packaging/flexible-packaging/flexible-packaging-market-size-trends-report http://www.prnewswire.com/news-releases/photovoltaics-market-worth-34559-billion-by-2020-291640941.html

Casey Kong

Mickey Finn

Nathaniel De Los Santos

CJ Pais

Valladolid

Support

HELLMAN FOUNDATION

Viewers Like You Thank You

CAP Business

Cody Noghera

Director Corporate Affiliates Program Jacobs School of Engineering

UC San Diego Jacobs School of Engineering

RESEARCH

April 16, 2015

Thank You to our Corporate Affiliates Program Members and Research Expo Key Sponsors

Welcomed over 600 attendees

Master of Advanced Study Updates

A master's degree for engineering professionals

AY 2014-15 Summary

142 Total students enrolled in 4 MAS programs

Graduating this year...

- 35 Architecture-based Enterprise Systems Engineering
- 12 Medical Device Engineering
- 24 Wireless Embedded Systems

MAS Engineering Degrees awarded: 246

MAS @ Jacobs School 2011 - 2015

Representation from more than 100 local companies

Master of Advanced Study Updates

A master's degree for engineering professionals

Fall 2015 – There's still room!!

We are still accepting applications – deadline is June 30, 2015*

*Special consideration for CAP company employees through July 31st

- Architecture-based Enterprise Systems Engineering
- Medical Device Engineering
- Wireless Embedded Systems
- Data Science and Engineering

Senior Design Projects

MAE 156B: Industry Sponsored Course

What the Course Provides

- Teams of 3-6 students
- 15 week project durations
- Deliver working prototype to sponsors
- IP assigned to sponsor

Projects can be interdisciplinary

- Mechanical
- Electromechanical
- Fluid mechanics
- Heat transfer
- Computer Control

Nathan Delson, Director, MAE Design Center - ndelson@ucsd.edu

https://sites.google.com/a/eng.ucsd.edu/mae3-robots/2015-spring/team-34

Senior Design Projects

Teradata Server Rack Cabinet Movers

SPAWAR

Surface Towed Geolocation System

Water Purification

Robotically Controlled ATV

Variable Ballast System

Delta Design IC Testing and Handling

Device Under Test Holder for Thermal Testing

Gyro and Accelerometer Testing

ATA Engineering: Modal Analysis Shaker

2015 Team Internship Program

50 Companies 82 Teams 338 Students

TIP Leadership Training Event

June 4th, 4:30-9:00pm

- 100 students attended
- 6 CAP Industry Members
- 4 TIP 2014 Alumni
- Business Basics
 Presentation
- Dinner & TIP
 Alumni/Industry Panel
- Team Dynamics + Leadership Presentation

Students say...

"My favorite part is the focus on teamwork, and maintaining efficiency & productivity through team dynamics."

"I am excited to be a part of TIP and transition into the real working world.

I enjoyed meeting professionals in my field."

"Given our limited experience... It's absolutely necessary to get this training beforehand!"

> UC San Diego Jacobs School of Engineering

CAP Year in Review 2014 - 2015

- 65 Dedicated Partners
- 5 New Members

84 On-campus Recruiting Events

- 53 Days @ Jacobs
- 4 Student Lunches
- 8 Office Hour Days
- 10 Interview Days

3

5

- 4 Engineering Competitions
 - TIP Training Day

Key Participation of CAP Executives in

- 1 Record Research Expo
 - Spirit of Solar Cruise
 - Quarterly Board Meetings
 - Center Research Reviews

CAP Business:

Dates to Remember:

Thursday, October 15, 2015 Friday, October 30, 2015 Thursday, February 4, 2016 Thursday, April 14, 2016 CAP Executive Board Meeting Contextual Robotics Forum CAP Executive Board Meeting Jacobs School Research Expo

UC San Diego Jacobs School of Engineering

Thank You CAP Executive Board