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The Planet is Already Committed

to a Dangerous Level of Warming
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‘ Making Buildings Energy Etficient

Increasing bandwidth of use, decreasing granularity of response.

1. Reduce energy consumption by IT equipment

Q
Q

Q

2. Reduce energy consumption by the HVAC system

Q
Q

Q

3. Reduce energy consumption by Plug-Loads

Q

Q
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SleepServers: Enable Aggressive Duty Cycling

o TIEEPI

Average Power
96 Watts

Jul Aug Sap

Yuvraj Agarwal, UC San Diego




Room 1 Room 2
ﬁﬁf Energy Meter ﬁ £ Energy Meter
= . #Fff_.-"'
- =
Occupancy ﬁ Occupancy
Sensor - Sensor
Z 2,
w =/ iy -
— ._:j,
e

H Basestations H

Energy Auditor Server

ﬂﬂr& Modules Analysis / Policy Modules

Policies and Amionh

Interface Modules

Actuation I

Energy Waste I Actuate basedon

occupancy

Settings I

MyDashboard ‘

Occupancy I

Administrative | Emergency Load

Visualization I

Priority Action I shed 5

\ Database / Storage

I Shut down all laptop-

type device s

Data Server

Ethernet

2. HVAC

Occupancy-driven HVAC
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Figure 4. Picture of our energy meter (a, b) along with our SheevaPlug base station (c¢) that is deployed in the hallways.
The CC2530 based wireless module that are in both the base station and the energy meters is also shown (d).

(d)



2 HVAC Energy Savings
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HVAC Energy Consumption (Electrical and Thermal) for a test day with a similar
weather profile. HVAC energy savings are significant: over 13% (HVAC-Electrical)

and 15.6% (HVAC-Thermal) for just the 2" floor

Estimated 40% savings across entire

building. Detailed occupancy can be
used to drive other systems.




‘ Demand Response

3. Plug Loads

= 54 HVAC zones including 1 kW corridor each floor
o 15-20 kW per floor, 260-358 W per zone
o DREM for plug loads with device type and priority levels
o Actuation classes: Off (PL 1), Occ_low (PL 2), Occ_hi (PL 3), On (PL 10).

Subsystem Type |

DR Priority-1 (P1)

DR Priority-2 (P2) |

Plug Load Devices

1 Class: always-off
Space heater, fans
Laptops, Chargers

Occ: Load=OFF | NotOcc: Load=OFF
Inconvenience=1pt/10min
Savings -> Device Load(Occ)
Savings -> Device Load(NotOcc)

Occ: Load=OFF | NotOcc: Load=OFF
Inconvenience=1pt/10min
Savings -> Device Load(Occ)
Savings -> Device Load(NotOcc)

2 | Class: Occupancy-Based-Low
PC Speakers, Room Printers

Occ: Load=ON | NotOcc: Load=OFF
Inconvenience=0pt
Savings -> Device Load(Occ)
Savings -> No Savings (NotOcc)

Occ: Load=0OFF
Inconven"

3 | Class: Occupancy-Based-High
Lamps

Occ: Load=ON | NotOcc: Load=OFF
Inconvenience=0pt
Savings -> No Savings (Occ)
Savings -> Device Load (NotOcc)

esktop Computers ane'.< <

Occ: Sleep if no input for 5mins | NotOcc: Sleep

4 ive | NotOcc: Sleep if CPU <
Inconvenience=0pt Inconvenience=1pt
_ Savings -> No Savings(Occ) Savings -> Desktop+LCD if allowed to sleep(Occ)
<& Savings -> Desktop + LCD (NotOcc) Savings -> Desktop+LCD (NotOcc)
Heating Ventilation and Air Conditioning (HVAC) System
5 Occ: ON | NotOcc(all rooms in zone): OFF

Inconvenience=1pt /room, 3pt/shared zone*
Savings -> 260W-358W per zone shutdown

Occ: ON | NotOcc(at least 1 room in zone): OFF
Inconvenience=2pt/10min room, 6pt/10min shared
Savings -> 260W-358W per zone shutdown




30 Room Deployment
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Figure 8: The energy consumption of our HVAC experiment. Occupancy information is gotten prior
to DR P1, and held constant for the duration of the DR event.
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Figure 9: The energy consumption of HVAC for the actual occupancy-based deployment.
zones controlled as occupancy changes.

HVAC

36.9% lower energ use over 8-hour work day. DR

response in minutes.
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‘ Campus As A Living Laboratory ot
Localized Co-Generation and Storage

Concentrix
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Advanced Energy al __Ei_tc_)rage
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UCSD East Campus Energy Park
Conceptual Development Plan
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A NEW Computing Platform: Instrumented
Buildings for measuring occupancy, energy use

Utility/ISO Synergy ADR
—> —_— Smart Client

Synergy Building
Control System

BuildingDepot
Zodiac

ZonePAC
BuildingSherlock
Sentinel

MCC

Occupancy Sensors

SleepServer

B

Synergy Smart Meters

x HVAC Control

Built in 2004, 145,000 sq ft, 5 floors
HVAC : VAV with reheat coil, 237 zones
Occupants : Faculty, staff and students

more than 1 year data, 17+ sensors per zone
100s of Air Handler (AHU) sensors
every ~5 minutes




Complicated Information
Flows in CP Systems

Infrequent, .
Many busy users 5 Low processing

uick at receivers

Amplify Information

attention ) \ nt

erchangeable

LOW
Few overloaded (and | [saNDWIDTH

By ‘;
. « P ‘ . .
oft ignored) operators| Frequent, slow P Ad-hoc, intermittent,
interactions N ° o diverse

REDUNDANCY

&b

g 08
Filter and compregs Value in numbers,
ﬂ,sed requests for attention Data deluge redundancy
attention
Constrained
“Cyber” Customers CP “Operating” System

“Physical” world

“Wealth of data, poverty of attention,” Herb Simon




Find Architectural Support To Structure
Information Flows

~ Security

| « Biometric locking system
e Video surveillance

* Smoke detector

e Alarm system

HVAC

e Control based on weather

e Use of solar panels and solar
heaters

e Adapt to user comfort

)

TET p—
T

Smart Home as an example CPS

Water Multimedia

e Cooking, drinking & washing * Television & Radio
e Lawn irrigation system e Video Games

e Solar heating system * Internet

e Pool filtration & heating e Recording systems

19
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BRICK: Exciting New Platform with new “Apps”

g yu Q Apps\ Next generation
A ‘ building applications
| Visualize Maintain  Analyze  Control ) via standardized API

A REST/ Native API

(> Scalable, distributed data storage A
» Metadata and contextual tagging Data management
» Access control across users system for sensors and
\_ > REST API for app development ) actuators

Data Connectors

A

1 ay Large amount of data

E ;-:3_; BEES . | generated in modern
BuiIdinA buildings

_ Building B Building C Building D

o http://brickschema.org/

[1] Agarwal, Yuvraj, et al. "BuildingDepot: An extensible and distributed architecture for building data storage, access and sharing."
Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings. ACM, 2012. 21



Models can extend reasoning
methods

Rule based

SO

[y sensors told
& me
88| got

The last time
| did

but
this time




Building Data Models and Comparative
Data Mining

« Working directly with sensor readings tends to find
extremes in sensor readings

= Models that capture on the inter-relationships between
sensors and parameters of interest

« Large differences between zones even on the same day

= Cluster rooms with the same characteristics

« Sensitivity to confounding parameters (human actions)

= Compare rooms that have the same confounding parameters

Misconfigurations are common, in 40% of buildings we examined.

[1]. Narayanaswamy, Balakrishnan, et al. "Data driven investigation of faults in HVAC systems with model, cluster and compare (MCC)."

Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings. ACM, 2014.
23



Better Models, Improved
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Model, Cluster, Compare: Enables us to detect
and use relationships

Conditioning more when unoccupied

76 290
l —-— Occupied Command == ZoOne Temperaturel
75 e 280
- 1270
o 74 2602
2 O
© 73f 250~
g 2405
e 72 o
ﬁ ol 1230
| — Supply Flowl 220
48:00 6:00 12:00 18:00 210
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80 270
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;J_“ 78¢ —..Heating SetPaint 1260
v 76 s
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© . >
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g .r. O 2405
E -m LL
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= / . 1230

70vJJ | = Supply Flow \./ A
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Setpoints never change High Airflow all the time
Set points and actuation not in sync

High Airflow Causes overcooling
95 \ 120
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85 .
v 80 E
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- "' » 40
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High Airflow  Even when temperature
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(Unnecessary) high flow when within setpoints
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CPS/IOT Needs, Requirements

fModeIs
 Encapsulate domain knowledge

% Standardize representation of disparate systems

~

J

4 .
Abstractions
 Simplify access to domain expertise
e Facilitate communication across systems

-
[Architecture A
e Allow models to co-exist to create a system of models
e Provide mechanisms for protection, communication and
\_ consistency )

26




UCSD and CPS

Across several engineering disciplines: EE, CS, SE, MAE, NE.

i

i
5
)
= a’
=
— 4
&1

CALIT2 @ UCSD

UCSD @ LANL

<= UCSD | School of
Jacobs | Engineering Engineering Institute » Los Alamos

NATIONAL LABORATORY
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