CONTEXTUAL ROBOTICS INSTITUTE

JOIN THE CONTEXTUAL ROBOTICS INSTITUTE

Joining the Contextual Robotics Institute provides access to UC San Diego faculty, researchers, and graduate students who are transforming autonomy, healthcare robotics and advanced manufacturing.

The Institute also provides industry partners with a coordinated research environment through which technical and research challenges are tackled in a collaborative, cross-disciplinary environment.

We build talent and technology for tomorrow's real-world robotics systems.

contact: cri-info@ucsd.edu

NORTHROP GRUMMAN

HENRIK CHRISTENSEN

Computer Science and Engineering

Director.

Contextual Robotics Institute hichristensen@eng.ucsd.edu

TODD HYLTON

Electrical and Computer Engineering

Executive Director, Contextual Robotics Institute thylton@eng.ucsd.edu UC San Diego Contextual Robotics Institute

9500 Gilman Drive #0405 La Jolla, CA 92093 / USA CRI-info@ucsd.edu

CONTEXTUAL ROBOTICS INSTITUTE

FACILITIES

AUTONOMY RESEARCH AND TESTING ECOSYSTEM

Institute researchers are collaborating across campus in order to turn UC San Diego into a living laboratory for autonomy, including self-driving vehicles. One of the first projects will be autonomous mail delivery, which is one of the ways the Institute is focused on the 'last mile' problem – when autonomous vehicles get off the freeway and need to navigate crowded neighborhood streets. UC San Diego is a leader in many of the areas critical for real-world autonomous vehicles including 5G and the future of wireless technologies, vehicle-to-vehicle communication, radar, user-centered design, cybersecurity, driver monitoring and interdisciplinary smart-cities research. More information: cri-info@ucsd.edu

AERODROME

The Institute's Aerodrome enables controlled, outdoor research with Unmanned Aerial Vehicles (UAVs) at UC San Diego. Constructed in 2017 with funding from our partners at Qualcomm and Northrop Grumman, the Aerodrome is San Diego's premier outdoor drone flight cage, supporting research and collaboration in autonomous flight, perception, machine learning and multi-vehicle collaboration. The facility is an enclosed, mesh cage, roughly 45^{\prime} x 55^{\prime} feet in area and 35^{\prime} tall. The space is available for use by UC San Diego faculty, staff and student researchers, as well as industry partners.

ROBOT GUIDES, ROBOT ZOO AND SMART HOME

On the first floor of Atkinson Hall you'll find a robot zoo, scenes from a next-generation Smart Home, and a pair of robots that work part time as building receptionists and tour guides. These facilities and the robots and humans you'll find working in them offer a sample of the varied robotics research being done at the Institute. The robot guides TritonBot and BoxBot, for example, are often out collecting data from interactions with visitors to Atkinson Hall. This project is aimed at learning to develop robotic systems that are better equipped to interact autonomously with humans. This is just one of the ways Institute researchers are focused on developing useful robotic systems capable of interacting in real time with humans in the real world.

More information: cri-info@ucsd.edu

HENRIK CHRISTENSEN Computer Science and Engineering

Director, Contextual Robotics Institute hichristensen@eng.ucsd.edu

TODD HYLTON

Electrical and Computer Engineering

Executive Director, Contextual Robotics Institute thylton@eng.ucsd.edu

UC San Diego Contextual Robotics Institute

9500 Gilman Drive #0405 La Jolla, CA 92093 / USA CRI-info@ucsd.edu

CONTEXTUAL ROBOTICS INSTITUTE

UC San Diego

AFFILIATED FACULTY

LEADERSHIP

Henrik Christensen

Director, Contextual Robotics Institute; Cognitive Robotics Lab

Todd Hylton

Exectutive Director, Contextual Robotics Institute

ANTHROPOLOGY

Thomas Levy

Center for Cyber-Archaeology & Sustainability

BIOENGINEERING

Gert Cauwenberghs

Integrated Systems Neuroengineering Lab

Todd Coleman

Neural Interaction Lab

Gabriel Silva

Mathematical Neuroscience and Neural Engineering Lab

COGNITIVE SCIENCE

Andrea Chiba

Neurally feasible robotic tools for use as embodied models

Virginia de Sa

Machine Learning multi-view/ multi-modal learning

David Kirsh

Interactive Cognition Lab

Ayse P. Saygin

Cognitive Neuroscience and Neuropsychology Lab

Douglas Nitz

Systems Neuroscience Lab

Zhuowen Tu

Machine Learning, Perception, and Cognition Lab

Angela Yu

Computational & Cognitive Neuroscience Lab

COMMUNICATION

Morana Alač

Human-robot interaction in everyday settings

COMPUTER SCIENCE AND ENGINEERING

Manmohan Chandraker

3D scene understanding for self-driving cars

Kamalika Chaudhuri

Center for Trustworthy Machine Learning

Garrison Cottrell

Mechanisms underlying human perception

Sicun Gao

Automated reasoning, design automation

Rajesh Gupta

Microelectronic Embedded Systems Lab

Ryan Kastner

Remote sensing platforms

Ravi Ramamoorthi

Center for Visual Computing

Laurel Riek

Robotics & Healthcare Engineering Lab

Tajana Rosing

System Energy Efficiency Lab

Hao Su

Deep learning for understanding 3D environments

ELECTRICAL AND COMPUTER ENGINEERING

Nikolay A. Atanasov

Existential Robotics Lab

Shava Fainman

Ultrafast and Nanoscale Optics Group

Joseph Ford

Photonics Systems Integration Lab

Tara Javidi

Advanced Networking Science Lab

Ken Kreutz-Delgado

QI/Calit2 Pattern Recognition Lab

Patrick Mercier

Energy-Efficient Microsystems

Gabriel Rebeiz

Phased arrays for autonomous transportation

Curt Schurgers

Remote sensing, imaging, system prototyping

Mohan Trivedi

Lab for Intelligent & Safe Automobiles

Nuno Vasconcelos

Statistical Visual Computing Lab

Michael Yip

Advanced Robotics and Controls Lab

GLOBAL POLICY & STRATEGY

Ruixue Jia

Economics, history and politics of robotics

INSTITUTE FOR NEURAL COMPUTATION

Scott Makeig

Swartz Center for Computational Neuroscience

MATHEMATICS

Melvin Leok

Computational Geometric Mechanics Group

MECHANICAL AND AEROSPACE ENGINEERING

Thomas Bewley

UCSD Flow Control & Coordinated Robotics Labs

Bob Bitmead

Control systems underpinning

Jorge Cortes

Multi-Agent Robotics Lab

Mauricio de Oliveira

Optimization, Dynamic Systems and Control

James Friend

Medically Advanced Devices Lab

Miroslav Krstic

Nonlinear and Adaptive Control Lab

Nick Gravish

Bio-inspired robot design, fabrication, and control

John Hwang

Large-scale Design Optimization

Sonia Martinez

Multi-Agent Robotics Lab

Tania Morimoto

Robotics, haptics, and human-inthe-loop interfaces

Sutanu Sarkar

Computational Fluid Dynamics

Frank Talke

Robotics in manufacturing of hard disks, medical devices

Michael Tolley

Bioinspired Robotics and Design

DEPARTMENT OF MUSIC

Shlomo Dubnov

Center for Research in Entertainment in Learning

NANOENGINEERING

Shaochen Chen

Nanobiomaterials, bioprinting, & tissue engineering

Joseph Wang

Micro- and nano-robotics

Sheng Xu

Flexible and stretchable electronics

STRUCTURAL ENGINEERING

Falko Kuester

Drone Lab