COSMOSUCSD
California State Summer School for Mathematics and Science

Clusters

Cluster 1 - Computers in Everyday Life

This cluster is First Choice only.

Instructors:
Curt Schurgers, Associate Teaching Professor, Electrical and Computer Engineering, UCSD
Leo Porter, Assistant Teaching Professor, Computer Science and Engineering, UCSD

Prerequisite:
Algebra II or Integrated Math II (students without prior programming experience are especially encouraged to apply)
(The focus of this cluster is students with little or no prior programming experience)

Description:
These days computers are everywhere, from our coffee makers and thermostats to our cell phones and televisions. They make our cars safer and more efficient through the use of over 100 processors that control everything from the brakes and engine to the stereo; they are used in robots to perform surgeries, which reduce pain and quickens the healing process; they allow us to explore our universe by controlling satellites, rovers and telescopes. There are billions of these "embedded computers" all around us that control devices, analyze signals and collect data as we go about our daily lives.
This course will focus on the basics of embedded computing, making it accessible even to students who have no prior programming experience. It provides an introduction to computation through lectures, guest speakers, and hands-on projects. It starts by teaching the fundamentals of programming where students use a puzzle-like programming language called AppInventor to create mobile phone applications, and then moves into more advanced programming languages in a progression of projects. The cluster concludes with a final project where students form small teams and create a project of their choosing.

2017 Cluster 1 newsletters
Cluster 1 website

Cluster 2 - Engineering Design and Control of Kinetic Sculptures

Instructors:
Nathan Delson, Academic Coordinator, Mechanical & Aerospace Engineering Department, UCSD
Raymond De Callafon, Professor, Mechanical & Aerospace Engineering Department, UCSD
Jack Silberman, Lecturer, Mechanical & Aerospace Engineering Department, UCSD

Prerequisite:
Algebra I and 8th-grade general science or equivalent

Recommended:
Algebra II or Integrated Math II, Trigonometry, Physics

Description:
Mechanical Engineering and Computer Control are brought together in many modern products that have moving parts, ranging from an automobile to a hard drive in an iPod. In this cluster, students will analyze, design and build Kinetic Sculptures operated under computer control. Mechanical Engineering methods will be used to design kinetic sculptures using state of the art facilities at the Mechanical and Aerospace Engineering (MAE) department. The facilities include the MAE Design Studio, a LASERcamm Rapid Prototyping machine and advanced computer laboratories for creating computer drawings, running dynamic simulations and programming a Kinetic Sculpture microcontroller. The kinetic sculptures that will be built by the students include a clock mechanism manufactured by a laser cutting machine (LASERcamm) and a reconfigurable lightweight mechanical structure in which balls move along ramps, bounce on trampolines and fall in baskets. The students will learn how to use a modern micro-processor controller to measure and analyze timing and mechanical behavior of their sculptures, integrating engineering design and control principles throughout the curriculum of this cluster. Examples of prior year projects can be seen at: https://sites.google.com/a/eng.ucsd.edu/kinetic-sculpt/.

2017 Cluster 2 newsletters

Cluster 3 - Living Oceans and Global Climate Change

Instructors:
Robert Pomeroy, Associate Teaching Professor, Department of Chemistry and Biochemistry, UCSD
Ngai Chin Lai, Associate Research Scientist, UCSD School of Medicine

Prerequisite:
Introductory high school chemistry and successfully completing the COSMOS Swimming Ability Certification form (for possible ocean activities; certification form not required until student is accepted into the cluster). The following swimming abilities are required:

  • 200 yards continuous swim, any stroke
  • 5 minutes of continuous treading of water

Description:
One component of this cluster will focus on the ocean's biology and the amazing diversity of marine habitats that extend from the poles to the tropics and from the intertidal to the abyss. Topics will include physiological adaptations, marine systematics, marine ecosystems, and the effects of climate change on seawater chemistry, ocean circulation, and marine life and diversity. The other component of this cluster will focus on the atmosphere-ocean system and how human activities are perturbing it. Topics will include the greenhouse effect, global warming due to increasing carbon dioxide produced by the burning of fossil fuels, impacts of pollution particles on the atmosphere, and how climate variability and climate change impact the atmosphere and the ocean. Our future to exist on this planet will depend on a comprehensive understanding of human impacts on the atmosphere and on the ocean ecosystem.

2017 Cluster 3 newsletters

Cluster 4 - When Disaster Strikes: Earthquake Engineering

Instructors:
Lelli Yael Van Den Einde, Associate Teaching Professor, Structural Engineering, University of California at San Diego
Ingrid Tomac, Assistant Research Scientist, Structural Engineering, University of California at San Diego
Jacqui Le, Project Engineer, KPFF San Diego

Prerequisite:
Two years of Algebra or Integrated Math I & II (with Trigonometry component)

Description:
Ever wonder why earthquakes occur and whether our buildings are safe in an earthquake? Ever wonder if your hometown lies along the part of an active earthquake fault and how we can protect buildings and bridges against earthquake forces? And just what is the San Andreas Fault all about? In this cluster, students will learn the answers to these questions and more, exploring the basics of plate tectonics on our active planet. Students will be exposed to both Structural Engineering and Geotechnical Engineering principles. They will be introduced to the basic physics and mathematics that explain how buildings and bridges react to earthquakes, and explore failures of different structures in past earthquakes. They will learn how we can protect these structures using modern technologies like dampers and base-isolation devices, and they will use principles of soil and rock mechanics to understand how the ground beneath a structure will perform. Students will participate in a number of hands-on laboratories culminating in a team term project where they design, build, and test their structures under earthquake loads using a small shake table. There will also be site visits to large-scale experimental research facilities at UCSD and real buildings constructed with new technologies.

2017 Cluster 4 newsletters

Cluster 5 - From Lasers to LCDs: Light at Work

Instructors:
Charles Tu, Distinguished Professor, Electrical and Computer Engineering, UCSD
Peter Ilinykh, Development Engineer, Electrical and Computer Engineering, UCSD

Prerequisite:
1 year of Physics preferred

Description:
We seldom realize how many cutting-edge technologies and successful companies are based on light, optics, and photonics (the combination of optics and electronics). This COSMOS cluster will highlight light-based technologies that we encounter in our daily lives: CD and DVD discs, fiberoptic communications, advanced displays, lasers for medical and industrial applications, and others. For each of these technological wonders, we will study the component parts, the underlying physics, the mathematical analysis that supports design, and the career opportunities they make possible. We will also examine new technologies from the developing field of nanophotonics.

Summer 2016 Cluster 5 Web Page

Summer 2017 Cluster 5 Web Page

2017 Cluster 5 newsletters

Cluster 6 - Biodiesel from Renewable Sources

Instructors:
Robert S. Pomeroy, Associate Teaching Professor, Department of Chemistry and Biochemistry, UCSD
Dr. Joe Watson, Former Vice Chancellor, UCSD

Prerequisite:
Introductory high school chemistry – Basic knowledge of ionic and covalent bonding, electronegativity and intermolecular forces of attraction.

Description:
This course will introduce students to renewable biofuels. This is a laboratory intensive experience where the students will extract and purify oil (lipids) from biomass, convert the oil into Fatty Acid Methyl Esters, FAMEs, also known as biodiesel, wash and purify the biodiesel, and then analyze the quality of the finished product.

Sustainable energy engages scientists, entrepreneurs and consumers searching for a renewable form of energy that will also not place the Earth's ecosystem at greater risk. Biofuels can be generated from biomass. This biomass can range from terrestrial, agricultural, forestry and municipal wastes, energy crops like soybeans, rapeseed, switchgrass and algae. Biodiesel has gained attention in recent years as a renewable fuel source due to its reduced greenhouse gas and particulate emissions, and it can be produced within 10 states in the US.

2017 Cluster 6 newsletters

Cluster 7 - Synthetic Biology

This cluster is First Choice only.

Instructors:
Mauricio de Oliveira, Adjunct Associate Professor, Mechanical & Aerospace Engineering Department, UCSD
Carlos Vera, Lecturer, Bioengineering, UCSD

Prerequisite:
One year of high school biology.

Description:

Synthetic biology is an emerging engineering field that aims to produce novel organisms in scalable and reliable ways to do something useful for humankind; for example, treat diseases, sense toxic compounds, produce new fuels or valuable materials.

After thousands of years of genetic manipulation by selective breeding, genetic engineering has finally developed techniques to read and modify the genetic code. Synthetic biology enriches genetic engineering by applying the basic engineering principles (design, build, test) to modular systems built from simple Lego-like standardized biological parts obtained from an open source catalog (BioBricks). Taking advantage of the increased capabilities to “write” and “read” genetic code, it is now possible to assembly large DNA sequences in minimal amount of time. These coding sequences can be incorporated into plasmid vectors and introduced into the cells to re-program the DNA original instructions. This new genetic code will produce new proteins that may modify the structure and/or function of the cell. In that sense, synthetic biology develops software that builds its own hardware!

One of the newest techniques of synthetic biology, named CRISPR-Cas9, is revolutionizing biomedical sciences by allowing the editing of genetic information in living complex organisms. This tool introduced new ethical dilemmas that will be analyzed in the course.

In this hands-on lab oriented course, we will introduce the basic concepts and techniques of synthetic biology, apply engineering principles to design, build and test modified organisms, and develop mathematical models that quantitatively describe their behavior. The students will learn basic recombinant engineering techniques to clone specific DNA sequences in plasmid vectors, how to transform E.coli bacteria and S. cerevisiae yeast with plasmid vectors to produce fluorescent and bioluminescent proteins, purify recombinant proteins, produce proteins in cell-free systems, test a basic CRISPR-Cas9 system, and predict the behavior of modified organisms using predictive mathematical models.

Techniques learned in this course will allow the students to propose new projects that require minimal lab equipment and that may be developed in their own home schools.

2017 Cluster 7 newsletters

Cluster 8 - Tissue Engineering and Regenerative Medicine

This cluster is First Choice only.

Instructors:
Robert Sah, Professor, Bioengineering & Orthopedic Surgery, UCSD
Roberto Gaetani, Research Scientist, Bioengineering, UCSD

Prerequisite:
Students must have completed Algebra II or Integrated Math II and one year of high school biology.

Description:
Tissue Engineering (TE) is the "application of engineering and life sciences to develop biological substitutes that restore,maintain, or improve tissue function." Regenerative Medicine (RM) is a "process for replacing or regenerating cells, tissues or organs, to restore or establish normal function." TE-RM are exciting and interdisciplinary fields involving engineers, biologists, chemists, material scientists, and doctors. TE-RM are increasingly providing alternative treatments for medical conditions where there are limitations associated with traditional approaches such as pharmaceuticals, medical devices, or transplants. Current TE-RM products include engineered skin used to treat wounds and burns, implantation of a patient’s own cells to repair damaged knees, and transplantation of bone marrow to stimulate the formation of bone.

Cluster 8 activities will include lectures, discussions, laboratories, and field trips to local TE-RM companies. During the first two weeks, students will be introduced to the foundations of TE-RM, using modern tools and techniques. During the last two weeks, students will undertake a research project in teams, brainstorming about important questions and possible research approaches; student research teams will each explore a novel scientific hypothesis, design and conduct experiments, analyze results, and create and deliver presentations in paper, oral, and poster forms.

2017 Cluster 8 newsletters

Cluster 9 - Music and Technology

Instructors:
Mauricio de Oliveira, Adjunct Associate Professor, Mechanical & Aerospace Engineering Department, UCSD
Shlomo Dubnov, Professor, Computer Music, UCSD

Prerequisite:
Basic computer programming experience recommended, but not required.

Description:
You do not have to be a musician to have fun and learn how science and engineering can be used to transform sounds and to perform and even compose music. With Cluster 9 you will learn about sound, music and technology as we explore the many ways in which technology is used to synthesize and analyze sounds and create music. Please keep in mind that Cluster 9 is first and foremost a science camp, not a music camp. As in any other COSMOS cluster, our primary goal is to have you explore and learn about science, engineering and technology. But unlike any other COSMOS cluster, you will do it while learning about sound and music. In Cluster 9 you will learn and experiment with basic physical principles that are used to make musical instruments, how they affect the perception of sound and what makes music beautiful. You will build simple electronic circuits that can transform audio signals, such as amplifiers, filters and effect generators and will learn how to program computers to analyze, modify, create music and even improvise. During the program student's team up in small groups to develop a technical and/or creative project to be presented at the end of the program.

Guitar.ucsd.edu

2017 Cluster 9 newsletters

Cluster 10 - Robot Inventors

This cluster is First Choice only.

Instructors:
Curt SchurgersAssociate Teaching Professor, Electrical and Computer Engineering, UCSD
Nick GravishAssistant Professor, Mechanical & Aerospace Engineering, UCSD

Prerequisite:
Algebra II or Integrated Math II
Programming experience is expected

Description:
TARS, R2D2, WALL-E, .... these robots have captured all of our imaginations, but reality isn't really that far off. Researchers around the world have made humanoid robots to study how children learn, created robotic animals to carry supplies in war zones, and built highly advanced surgical robots that act like snakes. And what is a self-driving car, if not just a car-shaped robot? Robotics is a highly diverse field, bringing together skills of mechanical design, electronics, artificial intelligence, programming, mechatronics, and even social sciences. This cluster will introduce the students to this exciting field. It is expected that they have a basic background in programming (JavaScript, C, Python, ...), but no prior exposure to robotics is necessary. They will be introduced to the mechanical design of building their own robots (CAD, basic machining), the sensors through which robots interact with the world, and the programming that gives them their autonomy. The cluster consists of a set of projects touching on each of these aspects, leading to a final design challenge. Lectures, guest speakers and field trips will complete the learning experience.

* These clusters are First Choice only.