Faculty


Computer Science and Engineering

Ravi Ramamoorthi
Ravi Ramamoorthi

Ramamoorthi’s research group develops the theoretical foundations, mathematical representations and computational models for the visual appearance of objects, digitally recreating or rendering the complexity of natural appearance. Ramamoorthi’s research has had significant impact in industry.  His work on spherical harmonic lighting and irradiance environment maps is now widely included in games (such as the Halo series), and is increasingly adopted in movie production.

Henrik W. Jensen
Henrik W. Jensen

One of Jensen’s major contributions is the photon mapping algorithm for simulating global illumination in complex, three-dimensional scenes such as those used in architecture, design and visual effects for film. Jensen also developed the first methods capable of rendering translucent materials such as snow, marble, milk and human skin. He received an Academy Award for technical achievement in 2004.

David Kriegman
David Kriegman

Kriegman is one of the most widely cited experts on the subject of face recognition, whose application includes social networking, robotics, human computer interaction, as well as homeland security purposes. Kriegman’s research in computer vision uses machine learning, geometry and physics, and he applies it to diverse areas of computer graphics, medical images, electron microscopy, and coral ecology.

Manmohan Chandraker
Manmohan Chandraker

Chandraker’s research focuses on 3D reconstruction and scene understanding. He has developed theoretical frameworks and practical systems for applications in autonomous driving, robotics, 3D modeling and human-computer interfaces. He has led collaborations with the automobile industry aiming towards low-cost, real-time visual systems for navigation, 3D localization and recognition in traffic scenes.

Hao Su
Hao Su

Su's research lies in broad disciplines related to artificial intelligence, including machine learning, computer vision, computer graphics, and robotics, with a focus on deep learning for 3D data understanding and interconnecting 3D data with other modalities such as images and texts. He is leading the construction of ShapeNet, a large-scale 3D-centric knowledge base of objects, and worked on ImageNet, a large-scale dataset of 2D images. Potential applications for Su's research include robotics, autonomous driving, virtual/augmented reality, smart manufacturing, etc.


Electrical and Computer Engineering

Manmohan Chandraker
Nuno Vasconcelos

Vasconcelos heads the Statistical Visual Computing Laboratory (SVCL) at UC San Diego. SVCL performs research in both fundamental and applied problems in computer vision, image processing, machine learning, and multimedia. The focus is on the development of intelligent systems, which combine image-understanding capabilities with any available additional information (in the form of supervision, annotations, user feedback, etc.) to enable sophisticated recognition, parsing, retrieval, classification, indexing, browsing, modeling, and compression of visual content. Strong emphasis is given to (1) statistical formulations that can deal with noise and uncertainty and (2) the search for solutions that are provably optimal under suitable optimality criteria.


Qualcomm Institute At UC San Diego

Thomas DeFanti
Thomas A. DeFanti

Since coming to UC San Diego in 2005, DeFanti's team has developed the StarCAVE, NexCAVE, TourCAVE, WAVE, and 4KAVE virtual reality (VR) systems and large-scale 10/40/100Gbs networks connections for visualization. DeFanti and Dan Sandin conceived the CAVE virtual reality theater in 1991. DeFanti is a research scientist at UC San Diego's Qualcomm Institute and a distinguished professor emeritus of Computer Science at the University of Illinois at Chicago. He received the 1988 ACM Outstanding Contribution Award and became an ACM Fellow in 1994.

Jürgen Schulze
Jürgen Schulze

Schulze’s research focuses on making interactive 3D visualization systems easier to use. This includes both the visual display of the data and input paradigms. He uses high-end clustered graphics systems, such as virtual reality CAVEs to immerse the user in the data and 3D tracked input devices and more recently smart phones and tablets to interact with the virtual reality system.


Cognitive Science

Zhuowen Tu
Zhuowen Tu

Tu’s research is at the intersection of computer vision, machine learning, neural computation and cognition and neuroimaging. His research group has been specifically focused on studying statistical learning/computing models for structured, large-scale, and multi-modality data prediction. His research has broad applications, notably for medical imaging.