News Release

New electrical engineering professor brings flexible and surgical robotics to UC San Diego

San Diego, Calif., October 14, 2015 -- A future in which robots can maneuver with high agility, dexterity and precision is not too far away. These flexible robots could one day assist with surgeries, navigate through tight, complex environments with ease, and be used to develop prosthetics that are capable of natural movement.

Click Here for a HighResolution Version
(A) Robotic systems such as the da Vinci surgical system have served as important platforms for device design and control algorithms for robot-assisted surgery. (B) New robot designs of flexible manipulators and arms provide means to control agile and dexterous motions for surgical catheters and endoscopes. (C) Actuators designed to mimic human muscle performance are designed for applications in prosthetics and animatronics. Image credit: M. Yip.

The design and intelligent control of flexible and surgical robotics are the specialties of Michael Yip, one of the new faculty joining the Jacobs School of Engineering at the University of California, San Diego. Yip received his Ph.D from the Department of Bioengineering at Stanford University. He will arrive in November as an assistant professor in the Department of Electrical and Computer Engineering at UC San Diego and will direct the new Advanced Robotics and Controls Laboratory (ARCLab). His research involves developing advanced algorithms that can control flexible robotics to move with high agility and dexterity. He also designs novel robotic systems that mimic the natural motion of animal and human bodies.

Click Here for a HighResolution Version
Michael Yip, a new professor joining the Department of Electrical and Computer Engineering at UC San Diego.

“Intelligent control of flexible robotics is a challenge that’s been plaguing the field. To make flexible robotics work effectively in places like the human body, we need to figure out how to control the robotics to crawl through constrained spaces and do manipulations without causing damage to their surroundings or to themselves,” said Yip. 

This type of control is important in applications like robot-assisted surgery. For example, a surgeon could control a long, thin, flexible robotic device to snake its way through a patient’s body and perform surgery with high precision and safety. Use of these robotic devices could also offer less invasive surgical procedures.

“Rather than dissecting the patient’s body, a surgeon could just make one or two small incisions on the body to insert these surgical robotic devices,” said Yip.

Controlling flexible robotics to maneuver through tight spaces — in a minimally invasive manner — is also useful in industrial applications including manufacturing, inspection and assembly. For example, flexible robotics could be used to inspect the wiring in an airplane wing or do repairs deep within a car engine without having to disassemble any major machinery.

Yip also works on making artificial muscles and actuators that can mimic biological muscle performance. Previously, he worked as a Walt Disney Imagineer within the Disney Research division, where he developed a technology for creating low-cost artificial muscles using conductive sewing thread. These synthetic muscles could contract and expand just like human muscles and were used to make life-like animatronic hands and arms. The artificial muscles were featured this summer in Popular Mechanics and Gizmodo.

Watch out for Yip in the upcoming UC San Diego Contextual Robotics Forum on Oct. 30. He will be presenting a poster and demonstration of his work at the Technology Showcase.

Register for the Contextual Robotics Forum here.

Media Contacts

Liezel Labios
Jacobs School of Engineering
858-246-1124
llabios@ucsd.edu